에이디반도치

TS12

12-Channel Self Calibration Capacitive Touch Sensor

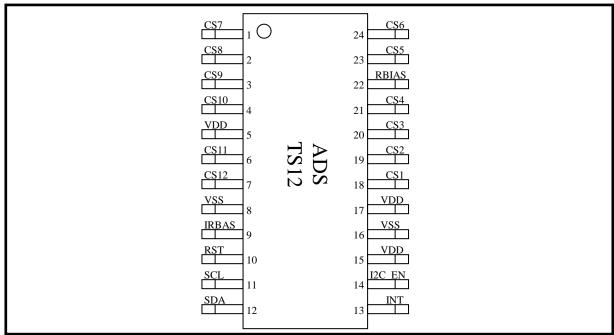
SPECIFICATION V2.1

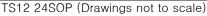
March 2016

ADSemiconductor

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Specification 1


1.1 General Feature


- 12-Channel capacitive sensor with auto sensitivity calibration
- Selectable output operation (single mode / multi-mode)
- Independently adjustable in 8 step sensitivity
- Touch intensity can be detectable within 3 steps (Low, Middle and High)
- Adjustable internal frequency with external resister
- Adjustable response time and interrupt level by the control registers
- I2C serial interface
- Embedded high frequency noise elimination circuit
- Embedded power key function on channel 1 for mobile phone application
- RoHS compliant 24SOP package

1.2 Application

- Mobile application (mobile phone / PDA / PMP etc)
- Membrane switch replacement
- Sealed control panels, keypads
- Door key-lock matrix application
- Touch screen replacement application

1.3 Package (24SOP)

2 Pin Description (24SOP)

PIN No.			Description	Protection
1	CS7	Analog Input	CH7 capacitive sensor input	VDD/GND
2	CS8	Analog Input	CH8 capacitive sensor input	VDD/GND
3	CS9	Analog Input	CH9 capacitive sensor input	VDD/GND
4	CS10	Analog Input	CH10 capacitive sensor input	VDD/GND
5	VDD	Digital Input	-	VDD/GND
6	CS11	Analog Input	CH11 capacitive sensor input	VDD/GND
7	CS12	Analog Input	CH12 capacitive sensor input	VDD/GND
8	VSS	Ground	Supply ground	VDD
9	IRBIAS	Analog Input	Internal I2C clk frequency adjust input	VDD/GND
10	RST	Digital Input	System reset (High reset)	VDD/GND
11	SCL	Digital Input	I2C clock input	VDD/GND
12	SDA	Digital Input/Output	I2C data (Open drain)	VDD/GND
13	INT	Digital Output	Interrupt output (Open drain)	VDD/GND
14	I2C_EN	Digital Input	I2C enable(Low enable)	VDD/GND
15	VDD	Digital Input	-	VDD/GND
16	VSS	Ground	Supply ground	VDD
17	VDD	Digital Input	-	VDD/GND
18	CS1	Analog Input	CH1 capacitive sensor input	VDD/GND
19	CS2	Analog Input	CH2 capacitive sensor input	VDD/GND
20	CS3	Analog Input	CH3 capacitive sensor input	VDD/GND
21	CS4	Analog Input	CH4 capacitive sensor input	VDD/GND
22	RBIAS	Analog Input	Internal bias adjust input	VDD/GND
23	CS5	Analog Input	CH5 capacitive sensor input	VDD/GND
24	CS6	Analog Input	CH6 capacitive sensor input	VDD/GND

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

3 Absolute Maximum Rating

Battery supply voltage	5.0V
Maximum voltage on any pin	VDD+0.3
Maximum current on any PAD	100mA
Power Dissipation	800mW
Storage Temperature	−50 ~ 150°C
Operating Temperature	−20 ~ 75°C
Junction Temperature	150℃
Note Unless any other comma	nd is noted, all above are operated in normal temperature.

4 ESD & Latch-up Characteristics

Mode	Polarity	Мах	Reference
		8000V	VDD
H.B.M	Pos / Neg	8000V	VSS
		8000V	P to P
		400V	VDD
M.M	Pos / Neg	400V	VSS
		400V	P to P
C.D.M		800V	DIRECT
C.D.M	Pos / Neg	800V	DINECT

4.1 **ESD Characteristics**

4.2 Latch-up Characteristics

Mode	Polarity	Max	Test Step	
LTeet	Positive	200mA	- 25mA	
l Test	Negative	-200mA		
V supply over 5.0V	Positive	8.25V	1.0V	

Electrical Characteristics 5

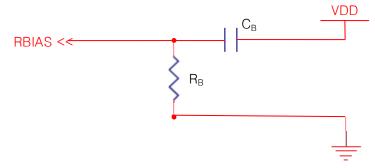
• V_{DD} =3.3V, Rb=510k, (Unless otherwise noted), T_A = 25 °C

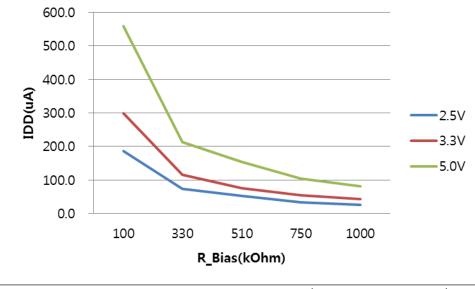
Characteristics	Symbol	Test Condition	Min	Тур	Max	Units
Operating supply voltage	V _{DD}		1.8	3.3	5.0	V
	1	V_{DD} = 3.3V R _B =510k	-	77		
	I _{DD}	V_{DD} = 5.0V R _B =510k	_	155		μA
Current consumption		V_{DD} = 3.3V R _B =510k R _{I2C} =20k	_	0.67	_	100
Note1	I _{DD_I2C}	V_{DD} = 5.0V R _B =510k R _{I2C} =30k	_	1.1	—	mA
		IDD_I2C Disable	_	-	1	μA
Output maximum sink current	I _{OUT}	T _A = 25 ℃	_	_	4.0	mA
Sense input						
capacitance range	Cs		-	10	100	рF
Note2						
Sense input	Rs		_	200	1000	Ω
resistance range	ns			200	1000	20
Minimum detective	ΔC	$Cs = 10pF, C_{DEG} = 200pF$	0.2	_	_	pF
capacitance difference	40	(I2C default sensitivity select)	0.2			pi
		$\Delta C > 0.2 pF$, Cs = 10pF,	_	12	_	
Output impedance	Zo	(I2C default sensitivity select)		12		Ω
(open drain)	20	$\Delta C < 0.2 pF$, Cs = 10pF,	_	30M	_	
		(I2C default sensitivity select)				
Self calibration time after	T _{CAL}	$V_{DD} = 3.3V R_{B} = 510k$	-	100	-	ms
system reset	• CAL	$V_{DD} = 5.0V R_{B} = 510k$	-	80	-	
Recommended bias resistance range	R _B	$V_{DD} = 3.3V$	200	510	820	kΩ
Note3		$V_{DD} = 5.0 V$	330	620	1200	
Maximum bias capacitance	$C_{\text{B}_{\text{MAX}}}$		_	820	1000	рF

Note 1 : In case of SCL frequency is 500kHz.

Note 2 : The sensitivity can be increased with lower C_S value.

The recommended value of C_S is 10pF when using 3T PC(Poly Carbonate) cover and 10 mm x 7 mm touch pattern.


Note 3 : The lower R_B is recommended in noisy condition.


TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

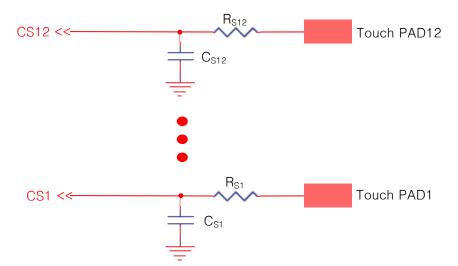
Implementation of TS12 6

6.1 RBIAS implementation

The RBIAS is connecting to the resistor to decide the oscillator and internal bias current. The sensing frequency, internal clock frequency and current consumption are therefore able to be adjusted with R_B. A voltage ripple on RBIAS can make critical internal error, so C_B is connected to the VDD (not GND) is recommended. (The typical value of C_B is 820pF and the maximum Value is 1nF.)

Normal operation current consumption curve (Pin21 I2C_EN is High)

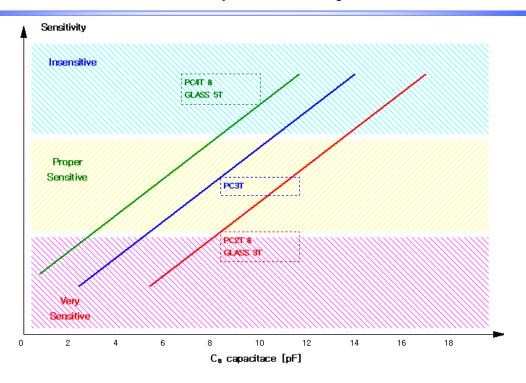
The current consumption curve of TS12 is represented in accordance with R_B value as above. The lower R_B requires more current consumption but it is recommended in noisy application. For example, refrigerator, air conditioner and so on.



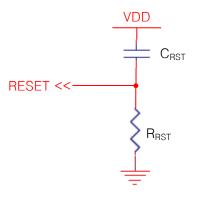
ADSemiconductor®

" Free from Common Mode Noise

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)


6.2 CS implementation

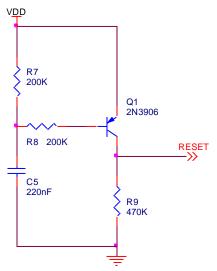
The TS12 has basically eight steps sensitivity, which is available to control with internal register by I2C interface. The parallel capacitor C_{S1} is added to CS1 and C_{S12} to CS12 to adjust sensitivity. The sensitivity will be increased when smaller value of C_S is used. (Refer to the below Sensitivity Example Figure) It could be useful in case detail sensitivity mediation is required. The internal touch decision process of each channel is separated from each other. The twelve channel touch key board application can therefore be designed by using only one TS12 without coupling problem. The R_S is serial connection resistor to avoid mal-function from external surge and ESD. (It might be optional.) From 200 Ω to 1k Ω is recommended for R_S . The size and shape of PAD might have influence on the sensitivity. The sensitivity will be optimal when the size of PAD is approximately an half of the first knuckle (it's about 10 mm x 7 mm). The connection line of CS1 ~ CS12 to touch PAD is recommended to be routed as short as possible to prevent from abnormal touch detect caused by connection line. The unused CS pin must be connected with the ground to prevent the unpredictable mal-function that occurred in the floating CS pin.


TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Sensitivity example figure with default sensitivity selection

6.3 RESET implementation

TS12 has internal data latches, so initial state of these latches must be reset by external reset pulse before normal operation starts. The reset pulse can be controlled by host MCU directly or other reset device. If not, the circuit should be composed as below figure. The reset pulse must have high pulse duration about a few msec to cover power VDD rising time. The recommended value of R_{RST} and C_{RST} are 330K Ω and 100 nF.



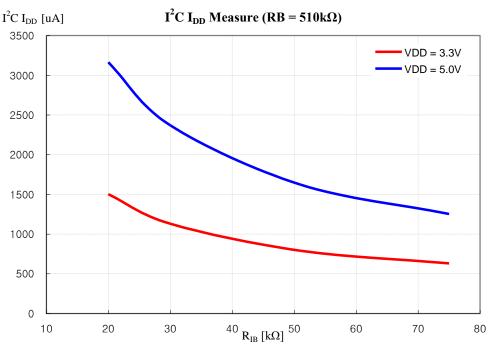
Recommended reset circuits 1

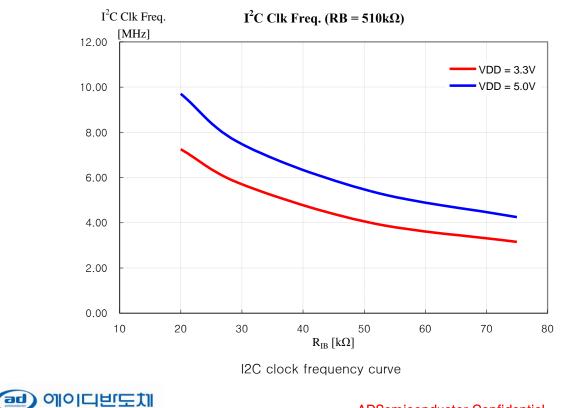
TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

The better performance is warranted with below reset circuit. The Q1 is turned on and makes reset pulse when power is on and VDD is raised to operating voltage. After a few msec (duration time is determined by R7, R8, C5), Q1 is turned off and TS12 can be operated with normal sensitivity.

Recommended reset circuits 2

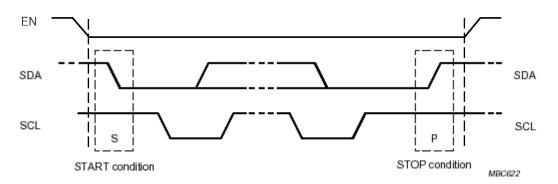
I²C Interface 7


7.1 IRBIAS Implementation


The R_{IB} is only charged in making the I2C internal clock and should be implemented as above figure. The smaller R_{IB} will increase the I2C internal clock frequency and current consumption. (Refer to the following consumption curve)

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

I2C Block operation current consumption curve

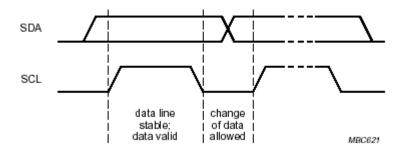

ADSemiconductor Confidential 10 /33

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

7.2 **Start & Stop Condition**

- ◀ Start Condition (S)
- ◀ Stop Condition (P)
- ◀ Repeated Start (Sr)

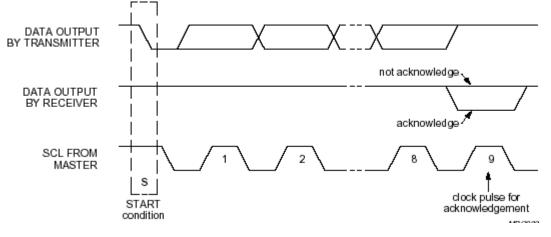
The EN (Pin21) should be low before START condition and be high after STOP condition.



TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

7.3 Data validity

The SDA should be stable when the SCL is high and the SDA can be changed when the SCL is low.



7.4 Byte Format

The byte structure is composed with 8Bit data and an acknowledge signal.

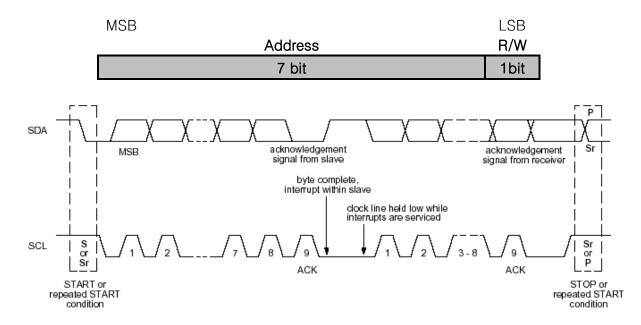
7.5 Acknowledge

It is a check bit whether the receiver gets the data from the transmitter without error or not. The receiver will write '0' when it received the data successfully and '1' if not.

ad) 에이디반도치

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

7.6 First Byte


7.6.1 Slave Address

It is the first byte from the start condition. It is used to access the slave device.

_	TS12 Chip Address : 7bit
I	Address
	0xF0

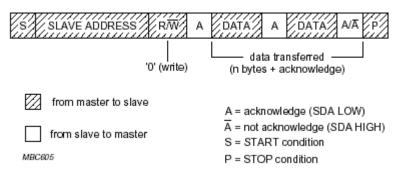
7.6.2 R/W

The direction of data is decided by the bit and it follows the address data.

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

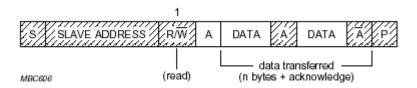
7.7 Transferring Data

7.7.1 Write Operation


The byte sequence is as follows:

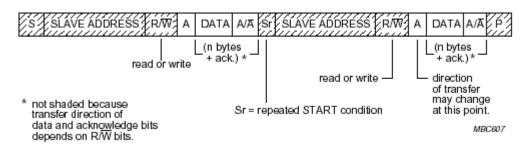
- \blacksquare the first byte gives the device address plus the direction bit (R/W = 0).
- the second byte contains the internal address of the first register to be accessed.

the next byte is written in the internal register. Following bytes are written in successive internal registers.


the transfer lasts until stop conditions are encountered.

■ the TS12 acknowledges every byte transfer.

7.7.2 Read Operation


The address of the first register to read is programmed in a write operation without data, and terminated by the stop condition. Then, another start is followed by the device address and R/W= 1. All following bytes are now data to be read at successive positions starting from the initial address.

7.7.3 Read/Write Operation

에이디반도체

ad)

ADSemiconductor Confidential

14 /33

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

7.8 I²C write and read operations in normal mode

The following figure represents the I²C normal mode write and read registers.

🖙 Wr	Write register 0x00 to 0x01 with data AA and BB										
Start	Device Address 0xF0	ACK	Register Address 0x00	ACK	Data AA	ACK	Data BB	ACK	Stop		
Read	register 0x00	and 0x0	1								
Start	Device Address 0xF0	ACK	Register Address 0x00	ACK	Stop						
Start	Device Address 0xF1	ACK	Data Read AA	ACK	Data Read BB	ACK	Stop				
	From Master to Slave From Slave to Master										

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

TS12 Register List 8

- ◀ Note: The unused bits (defined as reserved) in I²C registers must be kept to zero.
- initialize phase. (Refer to the chapter 9. initialize flow)
- ◀ Note: HS (High Sensitivity) / MS (Middle Sensitivity) / LS (Low Sensitivity)
- ◀ Note: Low Output (light touch) / Middle Output (middle touch) / High Output (hard touch)

Nome	Addr.	Reset Value		ŀ	Register	egister Function and Description					
Name	(Hex)	(Bin)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Sensitivity1	02h	1011 1011	Ch2HL		Ch2M		Ch1HL		Ch1M		
Sensitivity2	03h	1011 1011	Ch4HL		Ch4M		Ch3HL		Ch3M		
Sensitivity3	04h	1011 1011	Ch6HL		Ch6M		Ch5HL		Ch5M		
Sensitivity4	05h	1011 1011	Ch8HL		Ch8M		Ch7HL		Ch7M		
Sensitivity5	06h	1011 1011	Ch10HL		Ch10M		Ch9HL	Ch9M			
Sensitivity6	07h	1011 1011	Ch12HL		Ch12M		Ch11HL	Ch11M			
CTRL1	08h	0010 0010	MS	FT	ГС	IL	С	RTC			
CTRL2	09h	0000 01XX	0	0	0	0	SRST	IDLE	1	1	
Ref_rst1	0Ah	1111 1110	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1	
Ref_rst2	0Bh	0000 1111	0	0	0	0	Ch12	Ch11	Ch10	Ch9	
Ch_hold1	0Ch	1111 1110	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1	
Ch_hold2	0Dh	0000 1111	0	0	0	0	Ch12	Ch11	Ch10	Ch9	
Cal_hold1	0Eh	0000 0000	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1	
Cal_hold2	0Fh	0000 0000	0	0	0	0	Ch12	Ch11	Ch10	Ch9	
Output1	10h	0000 0000	OU	IT4	OL	JT3	OL	OUT2		OUT1	
Output2	11h	0000 0000	OU	T8	OUT 7		OL	OUT6		OUT5	
Output3	12h	0000 0000	OU	T12	OU.	T11	OUT10		OUT9		

8.1 I²C Register Map

8.2 Sensitivity Control Register

<mark>Sen</mark> Address (h Type: R/W	-	Ch	Channel 1 & 2 Sensitivity Control				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ch2HL		Ch2M[2:0]		Ch1HL		Ch1M[2:0]	

Description

The sensitivity of channel 1 and 2 are adjustable by Sensitivity_1 register. ChxM[2:0] allows various middle sensitivity and also the high and low sensitivities are decided with ChxHL.

Bit name	Reset	Function
		Middle sensitivity T (= thickness of PC) @Cs = 0pF
		↓ 000: 14~16T ↓ 100: 7~9T
ChxM[2:0]	011	↓ 001: 12~14T ↓ 101: 6~8T
		♣ 010: 10~12T ♣ 110: 5~7T
		♣ 011: 08~10T ♣ 111: 3~5T
		High and Low sensitivity selection for channel x
		0: $HS = MS - (MS * 0.2)$
ChxHL	1	LS = MS + (MS * 0.2)
		1: $HS = MS - (MS * 0.3)$
		LS = MS + (MS * 0.3)

Sensitivity2

Channel 3 & 4 Sensitivity Control

Address (hex): 03h Tung B/W

	Type: R/W							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ſ	Ch4HL		Ch4M[2:0]		Ch3HL		Ch3M[2:0]	

Description

The sensitivity of channel 3 and 4 are adjustable by Sensitivity_2 register. ChxM[2:0] allows various middle sensitivity and also the high and low sensitivities are decided with ChxHL.

Bit name	Reset	Function
		Middle sensitivity T (= thickness of PC) @Cs = 0pF
		♣ 000: 14~16T ♣ 100: 7~9T
ChxM[2:0]	011	↓ 001: 12~14T ↓ 101: 6~8T
		♣ 010: 10~12T ♣ 110: 5~7T
		♣ 011: 08~10T ♣ 111: 3~5T
		High and Low sensitivity selection for channel x
		0: HS = MS - (MS * 0.2)
ChxHL	1	LS = MS + (MS * 0.2)
		1: HS = MS - (MS * 0.3)
		LS = MS + (MS * 0.3)

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Address (ł	-	•					
Type: R/W Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ch6HL	Ch6M[2:0]			Ch5HL		Ch5M[2:0]	

Description

The sensitivity of channel 5 and 6 are adjustable by Sensitivity_3 register. ChxM[2:0] allows various middle sensitivity and also the high and low sensitivities are decided with ChxHL.

Bit name	Reset	Function				
		Middle sensitivity T (= thickness of PC) @Cs = 0pF				
		♣ 000: 14~16T ♣ 100: 7~9T				
ChxM[2:0]	011	♣ 001: 12~14T ♣ 101: 6~8T				
		↓ 010: 10~12T ↓ 110: 5~7T				
		ol1: 08~10T ↓ 111: 3~5T				
		High and Low sensitivity selection for channel x				
		0: $HS = MS - (MS * 0.2)$				
ChxHL	1	LS = MS + (MS * 0.2)				
		1: $HS = MS - (MS * 0.3)$				
		LS = MS + (MS * 0.3)				

Channel	7	8 8	Sensitivity	Control
---------	---	-----	-------------	---------

Address (hex): 05h · • •

Sensitivity4

Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ch8HL	Ch8M[2:0]			Ch7HL		Ch7M[2:0]	

Description

The sensitivity of channel 7 and 8 are adjustable by Sensitivity_4 register. ChxM[2:0] allows various middle sensitivity and also the high and low sensitivities are decided with ChxHL.

Bit name	Reset	Function				
		Middle sensitivity T (= thickness of PC) @Cs = 0pF				
		♣ 000: 14~16T ♣ 100: 7~9T				
ChxM[2:0]	011	↓ 001: 12~14T ↓ 101: 6~8T				
		♣ 010: 10~12T ♣ 110: 5~7T				
		↓ 011: 08~10T ↓ 111: 3~5T				
		High and Low sensitivity selection for channel x				
		0: HS = MS - (MS * 0.2)				
ChxHL	1	LS = MS + (MS * 0.2)				
		1: HS = MS - (MS * 0.3)				
		LS = MS + (MS * 0.3)				

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Address (h	-						
Type: R/W Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ch10HL	Ch10M[2:0]			Ch9HL		Ch9M[2:0]	

Description

The sensitivity of channel 9 and 10 are adjustable by Sensitivity_5 register.ChxM[2:0] allows various middle sensitivity and also the high and low sensitivities are decided with ChxHL.

Bit name	Reset	Function				
		Middle sensitivity T (= thickness of PC) @Cs = 0pF				
		♣ 000: 14~16T ♣ 100: 7~9T				
ChxM[2:0]	011	♣ 001: 12~14T ♣ 101: 6~8T				
		🖕 010: 10~12T 🛛 🖕 110: 5~7T				
		🖕 011: 08~10T 🛛 🖕 111: 3~5T				
		High and Low sensitivity selection for channel x				
		0: $HS = MS - (MS * 0.2)$				
ChxHL	1	LS = MS + (MS * 0.2)				
		1: $HS = MS - (MS * 0.3)$				
		LS = MS + (MS * 0.3)				

Channel 11	& 12 Sensitivity	Control
------------	------------------	---------

Address (hex): 07h · • •

Sensitivity6

туре. н/ w							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ch12HL		Ch12M[2:0]		Ch11HL		Ch11M[2:0]]

Description

The sensitivity of channel 11 and 12 are adjustable by Sensitivity_6 register. ChxM[2:0] allows various middle sensitivity and also the high and low sensitivities are decided with ChxHL.

Bit name	Reset	Function				
ChxM[2:0]	011	Middle sensitivity T (= thickness of PC) @Cs = 0pF 4 000: 14~16T 4 100: 7~9T 4 001: 12~14T 4 101: 6~8T 4 010: 5 77				
ChxHL	1	High and Low sensitivity selection for channel x 0: HS = MS - (MS * 0.2) LS = MS + (MS * 0.2) 1: HS = MS - (MS * 0.3) LS = MS + (MS * 0.3)				

8.3 General Control Register1

TS12 General Control Register1

Address (hex): 08h Type: R/W

CTRL1

1900.100							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MS	FTC[1:0]		ILC[1:0]		RTC[2:0]		

Description

The calibration speed just after power on reset is very high during the time which is defined by FTC[1:0] to have a good adoption against unstable external environment.

Bit name	Reset	Function
MS	0	Mode Selection 0: auto alternate (fast/slow) mode 1: fast mode
FTC[1:0]	01	First Touch Control Below time stands on VDD = 3V / Rb = 300KΩ 00: 5 sec 01: 10 sec 10: 15 sec 11: 20 sec
ILC[1:0]	00	Interrupt Level Control 00: Interrupt is on middle or high output. 01: Interrupt is on low or middle or high output. 10: Interrupt is on middle or high output. 11: Interrupt is on high output.
RTC[2:0]	011	Response Time Control Response period = RTC[2:0] + 2

8.4 General Control Register2

CTF	RL2	TS12 Gei	neral Cont	rol Registe	er2		
Address (h	iex): 09h						
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	0	SRST	SLEEP	1	1

Description

All the digital blocks except analog and I2C block are reset when SRST is set. The SLEEP function allows getting very low current consumption when it is set. But the response time will be longer than normal operation. The bit0 and bit1 must be written with 0b'11 by host MCU.

Bit name	Reset	Function
		Software Reset
SRST	0	0: Disable Software Reset
		1: Enable Software Reset
		Sleep Mode Enable
SLEEP	1	0: Disable Sleep Mode
		1: Enable Sleep Mode
Bit[1:0]	ХХ	These bits must be written by 0b'11 during a system initialize
DIL[1.0]	~~	phase. (refer to the chapter 9 "initialize flow example")

8.5 Channel Reference Reset Control Register

Address (ł		Ch	nannel1~8	Reference	e Reset Co	ontrol	
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1

Description

The reference value of each channel will be renewing when Chx is set.

Bit name	Reset	Function			
Chx	1	0: Disable reference reset			
CIIX		1: Enable reference reset			
Ch1	0	0: Disable reference reset			
CIT	0	1: Enable reference reset			

Ref_rst2

Channel9~12 Reference Reset Control

Address (hex): 0Bh

Type: R/W

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	0	Ch12	Ch11	Ch10	Ch9

Description

The reference value of each channel will be renewing when Chx is set.

Bit name	Reset	Function
Chx	1	0: Disable reference reset
	•	1: Enable reference reset

8.6 Channel 1~8 Sensing Control Register

Ch_hold1 Address (hex): 0Ch Type: R/W		Channel 1 ~ 8 Hold Enable Register					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1

Description

The operation of each channel is independently available to control. A channel doesn't be worked and the calibration is paused when it is set.

Bit name	Reset	Function		
Chx	1	0: Enable operation (sensing + calibration)		
UIIX	I	1: Hold operation (No sensing + Stop calibration)		
Ch1	0	0: Enable operation (sensing + calibration)		
CIT		1: Hold operation (No sensing + Stop calibration)		

8.7 Channel 9~12 Sensing Control Register

Ch_hold2 Address (hex): 0Dh Type: R/W		Channel 9 ~ 12 Hold Enable Register					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	0	Ch12	Ch11	Ch10	Ch9

Description

The operation of each channel is independently available to control. A channel doesn't be worked and the calibration is paused when it is set.

Bit name	Reset	Function
CEx	1	0: Enable operation (sensing + calibration) 1: Hold operation (No sensing + Stop calibration)

8.8 Channel 1~8 Calibration Control Register

	s (hex): 0Eh		annel 1 ~	8 Calibra	tion Enabl		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1

Description

The calibration of each channel is independently available to control. Each channel is working even if a bit is set.

Bit name	Reset	Function
Chx	0	0: Enable reference calibration (sensing + calibration) 1: Disable reference calibration (sensing + No calibration)

8.9 Channel 9~12 Calibration Control Register

Cal_hold2 Address (hex): 0Fh		Ch	annel 9 ~	12 Calibr	ation Enat	ole Registe	ər
Type: R/W							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	0	Ch12	Ch11	Ch10	Ch9

Description

The calibration of each channel is independently available to control. Each channel is working even if a bit is set.

Bit name	Reset	Function
Chx	0	0: Enable reference calibration (sensing + calibration) 1: Disable reference calibration (sensing + No calibration)

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

8.10 Output Register

	Output1 Address (hex): 10h Type: R		Channel 1 ~ 4 Output Register					
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OUT4[1:0]		OUTS	8[1:0]	OUT2	[1:0]	OUT1	[1:0]	

Description

The each channel output of TS12 is compressed with 2 bits. It has 3 level output information that is low, middle and high.

Bit name	Reset	Function
		Output of channel 4
		00: No output
OUT4[1:0]	00	01: low output
		10: middle output
		11: high output
		Output of channel 3
		00: No output
OUT3[1:0]	00	01: low output
		10: middle output
		11: high output
		Output of channel 2
		00: No output
OUT2[1:0]	00	01: low output
		10: middle output
		11: high output
		Output of channel 1
		00: No output
OUT1[1:0]	00	01: low output
		10: middle output
		11: high output

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Output2 Channel 5 ~ 8 Output Register

Address (h	Address (hex): 11h							
Type: R								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
OUT8[1:0]		OUT7[1:0]		OUT6[1:0]		OUT5[1:0]		

Description

The each channel output of TS12 is compressed with 2 bits. It has 3 level output information that is low, middle and high.

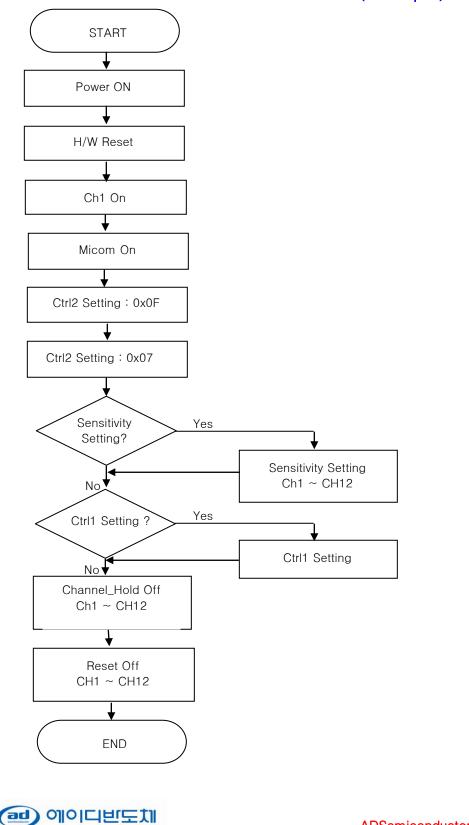
Bit name	Reset	Function
		Output of channel 8
		00: No output
OUT8[1:0]	00	01: low output
		10: middle output
		11: high output
		Output of channel 7
		00: No output
OUT7[1:0]	00	01: low output
		10: middle output
		11: high output
		Output of channel 6
		00: No output
OUT6[1:0]	00	01: low output
		10: middle output
		11: high output
		Output of channel 5
	00	00: No output
OUT5[1:0]		01: low output
		10: middle output
		11: high output

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

Output3 Channel 9~ 12 Output Register

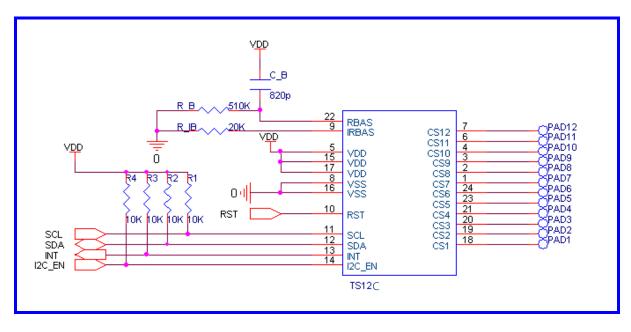
	Address (hex): 12h								
Type: R									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
OUT12[1:0]		OUT11[1:0]		OUT10[1:0]		OUT9[1:0]			

Description


The each channel output of TS12 is compressed with 2 bits. It has 3 level output information that is low, middle and high.

Bit name	Reset	Function
		Output of channel 12
		00: No output
OUT12[1:0]	00	01: low output
		10: middle output
		11: high output
		Output of channel 11
		00: No output
OUT11[1:0]	00	01: low output
		10: middle output
		11: high output
		Output of channel 10
		00: No output
OUT10[1:0]	00	01: low output
		10: middle output
		11: high output
	00	Output of channel 9
		00: No output
OUT9[1:0]		01: low output
		10: middle output
		11: high output

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

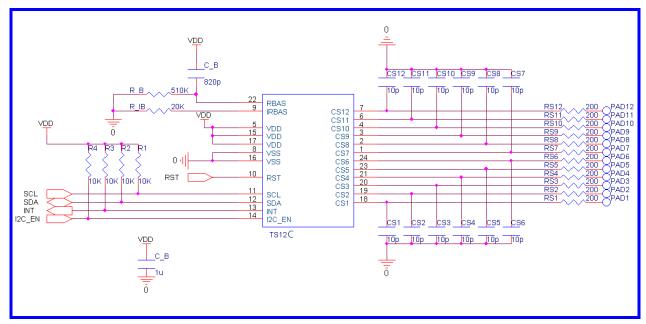

ADSemiconductor®

" Free from Common Mode Noise

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

10 Recommended Circuit Diagram

10.1 Application Example in clean power environment

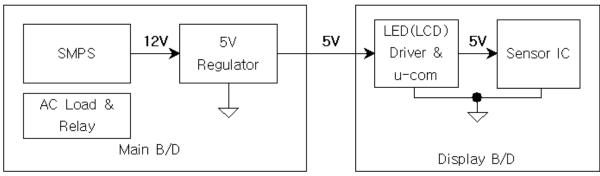

TS12 Application Example Circuit (Clean power environment)

- In PCB layout, R_B should not be placed on touch pattern. If not, C_B has to be connected. The R_B pattern should be routed as short as possible.
- The CS patterns also should be routed as short as possible and the width of line might be about 0.25mm.
- The capacitor that is between VDD and GND is an obligation. It should be located as close as possible from TS12.
- The CS pattern routing should be formed by bottom metal (opposite metal of touch PAD).
- The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent external noise from interfere with sensing frequency.
- The TS12 is reset if RST Pin is high. (See 6.3 Reset implementation chapter)

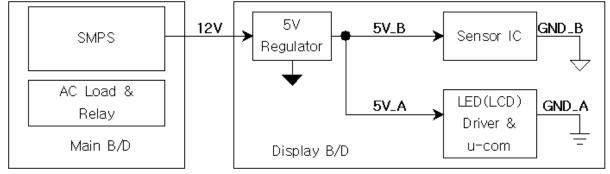
TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

10.2 Application Example in noisy environment

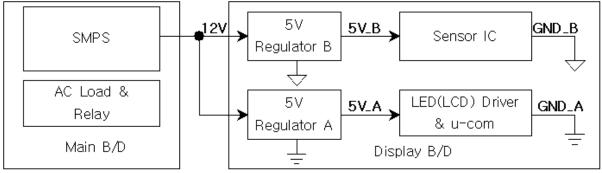
TS12 Application Example Circuit (Noisy environment)


- The VDD periodic voltage ripple over 50mV and the ripple frequency is lower than 10 kHz can 4 cause wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be separated from other circuit. Especially LED driver power line or digital switching circuit power line certainly should be treated to be separated from touch circuit.
- 4 The smaller R_B is recommended in noisy environments.

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

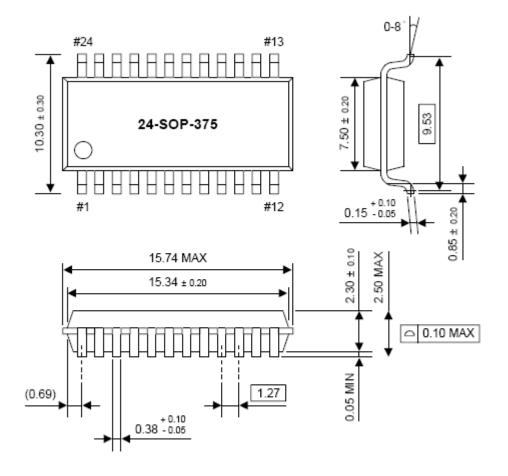

10.3 Example – Power Line Split Strategy PCB Layout

A. Not split power Line (Bad power line design)



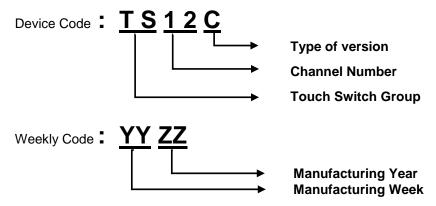
- The noise that is generated by AC load or relay can be loaded at 5V power line. 4
- 4 A big inductance might be appeared in case of the connection line between main board and display board is too long, moreover the voltage ripple could be generated by LED (LCD) display driver at VDD (5V).

B. Split power Line (One 5V regulator used) – Recommended


C. Split power Line (Separated 5V regulator used) – Strongly recommended

TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

11 MECHANICAL DRAWING



TS12 (12-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

12 MARKING DESCRIPTION

NOTES:

LIFE SUPPORT POLICY

AD SEMICONDUCTOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF AD SEMICONDUCTOR CORPORATION

The ADS logo is a registered trademark of ADSemiconductor

© 2015 ADSemiconductor – All Rights Reserved

www.adsemicon.com www.adsemicon.co.kr

ADSemiconductor Confidential 33 /33