



8-CH Auto Sensitivity Calibration Capacitive Touch Sensor

SPECIFICATION VER. 1.7

| 작성 | 검토 | 팀장 | Marketing | Q A | Approval |
|----|----|----|-----------|-----|----------|
|    |    |    |           |     |          |
|    |    |    |           |     |          |

ADSemiconductor Confidential

# General

The ANSG08 is 8-Channel capacitive sensor with auto sensitivity calibration. And the supply voltage range is from 3.0 to 5.5V.

The ANSG08 offers LED drivers with 16 steps dimming controller. The D1~D8 ports can be used for PWM output for LED dimming control.

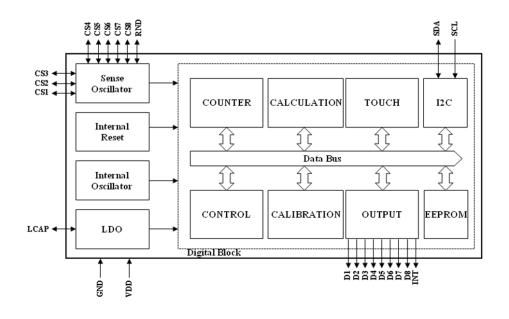
The result of touch sensing can be checked by two kind of interface. One is parallel output ports(D1~D8]). D1~D8 are touch sensing result of CS1~CS8. The other is  $I^2C$  serial interface. I2C interface might be useful when the MCU IO or connector resource is not enough in the application.

ANSG08 has the EEPROM. So it is possible to change the reset value of I2C register

# Feature

■ 8-Channel capacitive sensor with auto sensitivity calibration

■ Available LED PWM drive up to 8


■ Multi interface - I2C serial interface / Parallel outputs

■ Selectable output operation (single mode / multi-mode)

- Adjustable 256 steps sensitivity
- Almost no external component needed

• Embedded common and normal noise elimination circuit

- Typical current consumption 500uA (@3.3V)
- RoHS compliant 24QFN/24SOP/16SOP packages
- Moisture sensitivity level 2 (MSL2)



## **Block Diagram**

# Application

- Home appliances (TV, Monitor keypads)
- Membrane switch replacement
- Sealed control panels, keypads
- Touch screen replacement application

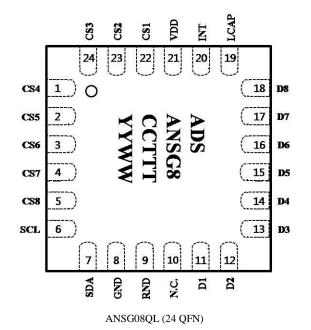
# **Ordering Information**

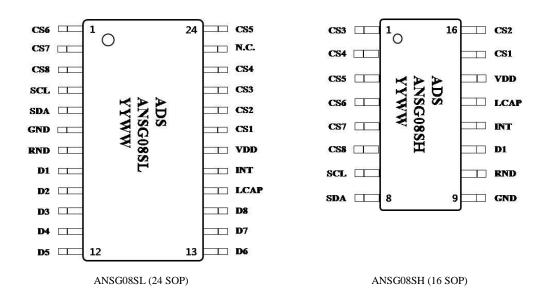
| Part No. | Package |
|----------|---------|
| ANSG08QL | 24 QFN  |
| ANSG08SL | 24 SOP  |
| ANSG08SH | 16 SOP  |

# **Revision History**

| Rev. | Description of change                                                                    | Date        | Originator |
|------|------------------------------------------------------------------------------------------|-------------|------------|
| 1.0  | First creation                                                                           | 11.07.11.   | KD PARK    |
| 1.1  | LDO output pin removal                                                                   | 11.08.16.   | EW LEE     |
| 1.2  | Adding the packages (24 SOP, 16 SOP)                                                     | 11.09.17.   | KD PARK    |
| 1.3  | Adding I2C Timing Diagram                                                                | 11. 11. 17. | KD PARK    |
| 1.4  | Modify endurance of the EEPROM                                                           | 12.04.16.   | JH LEE     |
| 1.5  | Revise the Pin Description(Pin no. 13, 14) of ANSG08SH                                   | 13.02.21.   | KD PARK    |
| 1.6  | Revise the document format<br>Revise the Recommended Circuit Diagram                     | 13. 05. 02. | KD PARK    |
| 1.7  | Add general features page, Ordering Information<br>I2C Register map partial modification | 16. 10. 10. | KD PARK    |

# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)


# Content


| Revision History31Pin Configuration52Pin Description62.1Pin Map (24QFN package)72.2Pin Map (24 SOP package)82.3Pin Map (164 SOP package)93Absolute Maximum Rating104ESD & Latch-up Characteristics104.1ESD Characteristics104.2Latch-up Characteristics104.2Latch-up Characteristics105Electrical Characteristics116ANSG08 Implementation126.1Typical current consumption126.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I <sup>2</sup> C Enable / Disable167.1I <sup>2</sup> C Enable / Disable167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C Register Map208.1I <sup>2</sup> C Register Map208.2Details21                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.1       Pin Map (24QFN package)       7         2.2       Pin Map (24 SOP package)       8         2.3       Pin Map (164 SOP package)       9         3       Absolute Maximum Rating       10         4       ESD & Latch-up Characteristics       10         4.1       ESD Characteristics       10         4.2       Latch-up Characteristics       10         5       Electrical Characteristics       10         6       ANSG08 Implementation       12         6.1       Typical current consumption       12         6.2       CS implementation       12         6.3       LED drive implementation       13         6.4       Parallel output       13         6.5       INT (Interrupt output) Implementation       13         6.6       Change initial reset register values (EEPROM writing)       14         6.7       SCL, SDA implementation       16         7.2       Start & stop condition       16         7.4       Byte format       16         7.5       Acknowledge       16         7.6       First byte       17         7.7       Transferring data       18         7.8       I <sup>2</sup> C urite |
| 2.2Pin Map (24 SOP package)82.3Pin Map (164 SOP package)93Absolute Maximum Rating104ESD & Latch-up Characteristics104.1ESD Characteristics104.2Latch-up Characteristics105Electrical Characteristics106ANSG08 Implementation126.1Typical current consumption126.2CS implementation126.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I²C Interface167.1I²C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I²C write and read operations in normal mode198ANSG08 control register list208.1I²C Register Map20                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.2Pin Map (24 SOP package)82.3Pin Map (164 SOP package)93Absolute Maximum Rating104ESD & Latch-up Characteristics104.1ESD Characteristics104.2Latch-up Characteristics105Electrical Characteristics106ANSG08 Implementation126.1Typical current consumption126.2CS implementation126.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I²C Interface167.1I²C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I²C write and read operations in normal mode198ANSG08 control register list208.1I²C Register Map20                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.1ESD Characteristics104.2Latch-up Characteristics105Electrical Characteristics116ANSG08 Implementation126.1Typical current consumption126.2CS implementation126.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I <sup>2</sup> C Interface167.1I <sup>2</sup> C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C timing diagram198ANSG08 control register list208.1I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.2Latch-up Characteristics105Electrical Characteristics116ANSG08 Implementation126.1Typical current consumption126.2CS implementation126.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I <sup>2</sup> C Interface167.1I <sup>2</sup> C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 Electrical Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5 Electrical Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.1Typical current consumption126.2CS implementation126.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I <sup>2</sup> C Interface167.1I <sup>2</sup> C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C timing diagram198ANSG08 control register list208.1I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.2CS implementation126.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I <sup>2</sup> C Interface167.1I <sup>2</sup> C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C timing diagram198ANSG08 control register list208.1I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.2CS implementation126.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I <sup>2</sup> C Interface167.1I <sup>2</sup> C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C timing diagram198ANSG08 control register list208.1I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.3LED drive implementation136.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I <sup>2</sup> C Interface167.1I <sup>2</sup> C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.4Parallel output136.5INT (Interrupt output) Implementation136.6Change initial reset register values (EEPROM writing)146.7SCL, SDA implementation157I <sup>2</sup> C Interface167.1I <sup>2</sup> C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C timing diagram198ANSG08 control register list208.1I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.6Change initial reset register values (EEPROM writing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.6Change initial reset register values (EEPROM writing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.7SCL, SDA implementation157I <sup>2</sup> C Interface167.1I <sup>2</sup> C Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C timing diagram198ANSG08 control register list208.1I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 $I^2C$ Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.1 $I^2C$ Enable / Disable167.2Start & stop condition167.3Data validity167.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8 $I^2C$ write and read operations in normal mode197.9 $I^2C$ timing diagram198ANSG08 control register list208.1 $I^2C$ Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7.2       Start & stop condition       16         7.3       Data validity       16         7.4       Byte format       16         7.5       Acknowledge       16         7.6       First byte       17         7.7       Transferring data       18         7.8       I <sup>2</sup> C write and read operations in normal mode       19         7.9       I <sup>2</sup> C timing diagram       19         8       ANSG08 control register list       20         8.1       I <sup>2</sup> C Register Map       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.3       Data validity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7.4Byte format167.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C timing diagram198ANSG08 control register list208.1I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.5Acknowledge167.6First byte177.7Transferring data187.8I <sup>2</sup> C write and read operations in normal mode197.9I <sup>2</sup> C timing diagram198ANSG08 control register list208.1I <sup>2</sup> C Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.6First byte177.7Transferring data187.8 $I^2C$ write and read operations in normal mode197.9 $I^2C$ timing diagram198ANSG08 control register list208.1 $I^2C$ Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.7Transferring data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.8       I <sup>2</sup> C write and read operations in normal mode       19         7.9       I <sup>2</sup> C timing diagram       19         8       ANSG08 control register list       20         8.1       I <sup>2</sup> C Register Map       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccc} 7.9 & I^2C \text{ timing diagram} & & 19\\ 8 & \text{ANSG08 control register list} & & 20\\ 8.1 & I^2C \text{ Register Map} & & 20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 ANSG08 control register list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.1 $I^2C$ Register Map20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9 Recommended Circuit Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9.1 ANSG08QL (24 QFN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9.2 ANSG08SL (24 SOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9.3 ANSG08SH (16 SOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 MECHANICAL DRAWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10.1 Mechanical Drawing of ANSG08QL (24 QFN Full lead type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10.2 Mechanical Drawing of ANSG08SL (24 SOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10.3 Mechanical Drawing of ANSG08SH (16 SOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11 MARKING DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11.1 Marking Description of ANSG08QL (24 QFN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11.2 Marking Description of ANSG08SL (24 SOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11.3 Marking Description of ANSG08SH (16 SOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### **Pin Configuration** 1





\* Drawings not to scale



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### 2 **Pin Description**

## VDD, GND

Supply voltage and ground pin.

## R.N.D

Radio frequency Noise Detection pin. Normally, R.N.D pin does not connect to anywhere. But, in radio frequency noise environment, this pin must form a pattern line on PCB.

## **CS1 ~ CS8**

Capacitive sensor input pins.

### LCAP

Internal LDO output port.

## D1 ~ D8

Parallel output ports of CS1~CS8 respectively / LED PWM drive output ports. The structure of these parallel output ports is open drain NMOS for active low output level operation.

## SCL, SDA

SCL is I<sup>2</sup>C clock input pin and SDA is I<sup>2</sup>C data input-output pin. These ports have internal pull-up resistor. In case of not use, this pin must be not connected to any circuitry.

## INT

Touch sensing interrupt output pin.



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

| Pin<br>Number | Name  | I/O                       | Description                                                                  | Protection |  |
|---------------|-------|---------------------------|------------------------------------------------------------------------------|------------|--|
| 1             | CS4   | Analog Input              | Capacitive sensor input 4                                                    | VDD/GNI    |  |
| 2             | CS5   | Analog Input              | Capacitive sensor input 5                                                    | VDD/GNI    |  |
| 3             | CS6   | Analog Input              | Capacitive sensor input 6                                                    | VDD/GNI    |  |
| 4             | CS7   | Analog Input              | Capacitive sensor input 7                                                    | VDD/GNI    |  |
| 5             | CS8   | Analog Input              | Capacitive sensor input 8                                                    | VDD/GNI    |  |
| 6             | SCL   | Digital Input             | I <sup>2</sup> C clock input                                                 | VDD/GNI    |  |
| 7             | SDA   | Digital<br>Input / Output | I <sup>2</sup> C data input-output<br>Open drain NMOS structure              | VDD/GNI    |  |
| 8             | GND   | Ground                    | Supply ground                                                                | VDD        |  |
| 9             | R.N.D | Analog Input              | Radio frequency Noise Detection pin                                          | VDD/GNI    |  |
| 10            | N.C   | -                         | -                                                                            |            |  |
| 11            | D1    | Digital Output            | Parallel output of CS1<br>LED PWM drive output1<br>Open drain NMOS structure | VDD/GNI    |  |
| 12            | D2    | Digital Output            | Parallel output of CS2<br>LED PWM drive output2<br>Open drain NMOS structure | VDD/GNI    |  |
| 13            |       |                           | Parallel output of CS3<br>LED PWM drive output3<br>Open drain NMOS structure | VDD/GNI    |  |
| 14 D4         |       | Digital Output            | Parallel output of CS4<br>LED PWM drive output4<br>Open drain NMOS structure | VDD/GNI    |  |
| 15            | D5    | Digital Output            | Parallel output of CS5<br>LED PWM drive output5<br>Open drain NMOS structure | VDD/GNI    |  |
| 16            | D6    | Digital Output            | Parallel output of CS6<br>LED PWM drive output6<br>Open drain NMOS structure | VDD/GNI    |  |
| 17            | D7    | Digital Output            | Parallel output of CS7<br>LED PWM drive output7<br>Open drain NMOS structure | VDD/GNI    |  |
| 18            | D8    | Digital Output            | Parallel output of CS8<br>LED PWM drive output8<br>Open drain NMOS structure | VDD/GNI    |  |
| 19            | LCAP  | Analog Output             | Internal LDO Output                                                          | VDD/GNI    |  |
| 20            | INT   | Digital Output            | Touch sensing interrupt output<br>Open drain NMOS structure                  | VDD/GNI    |  |
| 21            | VDD   | Power                     | Power (3.0V~5.5V)                                                            | GND        |  |
| 22            | CS1   | Analog Input              | Capacitive sensor input 1                                                    | VDD/GNI    |  |
| 23            | CS2   | Analog Input              | Capacitive sensor input 2                                                    | VDD/GNI    |  |
| 24            | CS3   | Analog Input              | Capacitive sensor input 3                                                    | VDD/GNI    |  |

#### Pin Map (24QFN package) 2.1



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

| Pin<br>Number        | Name  | I/O                       | Description                                                                  | Protection |
|----------------------|-------|---------------------------|------------------------------------------------------------------------------|------------|
| 1                    | CS6   | Analog Input              | Capacitive sensor input 6                                                    | VDD/GND    |
| 2                    | CS7   | Analog Input              | Capacitive sensor input 7                                                    | VDD/GND    |
| 3                    | CS8   | Analog Input              | Capacitive sensor input 8                                                    | VDD/GND    |
| 4                    | SCL   | Digital Input             | I <sup>2</sup> C clock input                                                 | VDD/GND    |
| 5                    | SDA   | Digital<br>Input / Output | I <sup>2</sup> C data input-output<br>Open drain NMOS structure              | VDD/GND    |
| 6                    | GND   | Ground                    | Supply ground                                                                | VDD        |
| 7                    | R.N.D | Analog Input              | Radio frequency Noise Detection pin                                          | VDD/GND    |
| 8                    | D1    | Digital Output            | Parallel output of CS1<br>LED PWM drive output1<br>Open drain NMOS structure | VDD/GND    |
| 9                    | D2    | Parallel output of CS2    |                                                                              |            |
| 10 D3 Digital Output |       |                           | Parallel output of CS3<br>LED PWM drive output3<br>Open drain NMOS structure | VDD/GNE    |
| 11                   | D4    | Digital Output            | Parallel output of CS4<br>LED PWM drive output4<br>Open drain NMOS structure | VDD/GNE    |
| 12                   | D5    | Digital Output            | Parallel output of CS5<br>LED PWM drive output5<br>Open drain NMOS structure | VDD/GND    |
| 13                   | D6    | Digital Output            | Parallel output of CS6<br>LED PWM drive output6<br>Open drain NMOS structure | VDD/GND    |
| 14                   | D7    | Digital Output            | Parallel output of CS7<br>LED PWM drive output7<br>Open drain NMOS structure | VDD/GND    |
| 15                   | D8    | Digital Output            | Parallel output of CS8<br>LED PWM drive output8<br>Open drain NMOS structure | VDD/GND    |
| 16                   | LCAP  | Analog Output             | Internal LDO Output                                                          | VDD/GND    |
| 17                   | INT   | Digital Output            | Touch sensing interrupt output<br>Open drain NMOS structure                  | VDD/GND    |
| 18                   | VDD   | Power                     | Power (3.0V~5.5V)                                                            | GND        |
| 19                   | CS1   | Analog Input              | Capacitive sensor input 1                                                    | VDD/GND    |
| 20                   | CS2   | Analog Input              | Capacitive sensor input 2                                                    | VDD/GND    |
| 21                   | CS3   | Analog Input              | Capacitive sensor input 3                                                    | VDD/GND    |
| 22                   | CS4   | Analog Input              | Capacitive sensor input 4                                                    | VDD/GND    |
| 23                   | N.C.  | -                         | -                                                                            | VDD/GND    |
| 24                   | CS5   | Analog Input              | Capacitive sensor input 5                                                    | VDD/GND    |

#### 2.2 Pin Man (24 SOP nackage)



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

| Pin<br>Number | Name  | I/O                       | Description                                                                  | Protection |
|---------------|-------|---------------------------|------------------------------------------------------------------------------|------------|
| 1             | CS3   | Analog Input              | Capacitive sensor input 3                                                    | VDD/GND    |
| 2             | CS4   | Analog Input              | Capacitive sensor input 4                                                    | VDD/GND    |
| 3             | CS5   | Analog Input              | Capacitive sensor input 5                                                    | VDD/GND    |
| 4             | CS6   | Analog Input              | Capacitive sensor input 6                                                    | VDD/GND    |
| 5             | CS7   | Analog Input              | Capacitive sensor input 7                                                    | VDD/GND    |
| 6             | CS8   | Analog Input              | Capacitive sensor input 8                                                    | VDD/GND    |
| 7             | SCL   | Digital Input             | I <sup>2</sup> C clock input                                                 | VDD/GND    |
| 8             | SDA   | Digital<br>Input / Output | I <sup>2</sup> C data input-output<br>Open drain NMOS structure              | VDD/GND    |
| 9             | GND   | Ground                    | Supply ground                                                                | VDD        |
| 10            | R.N.D | Analog Input              | Radio frequency Noise Detection pin                                          | VDD/GND    |
| 11            | D1    | Digital Output            | Parallel output of CS1<br>LED PWM drive output1<br>Open drain NMOS structure | VDD/GND    |
| 12            | INT   | Digital Output            | Touch sensing interrupt output<br>Open drain NMOS structure                  | VDD/GND    |
| 13            | LCAP  | Analog Output             | Internal LDO Output                                                          | VDD/GND    |
| 14            | VDD   | Power                     | Power (3.0V~5.5V)                                                            | GND        |
| 15            | CS1   | Analog Input              | Capacitive sensor input 1                                                    | VDD/GND    |
| 16            | CS2   | Analog Input              | Capacitive sensor input 2                                                    | VDD/GND    |

#### Pin Map (164 SOP package) 2.3



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### **Absolute Maximum Rating** 3

| Battery supply voltage                            | 6V                                      |
|---------------------------------------------------|-----------------------------------------|
| Maximum voltage on any pin                        | VDD+0.3                                 |
| Maximum current on any PAD                        | 100mA                                   |
| Power Dissipation                                 | 800mW                                   |
| Storage Temperature                               | -50 ~ 150 ℃                             |
| Operating Temperature                             | -20 ~ 75 °C                             |
| Junction Temperature                              | 150°C                                   |
| Note : Unless any other command is noted, all abo | ove are operated in normal temperature. |

#### ESD & Latch-up Characteristics 4

#### Mode Polarity Max Reference 7500V VDD H.B.M Pos / Neg 7500V VSS 7500V P to P 550V VDD M.M Pos / Neg 550V VSS P to P 550V 1000V C.D.M Field Induced Charge

#### 4.1 **ESD** Characteristics

#### 4.2 Latch-up Characteristics

| Mode               | Polarity | Max    | Reference |
|--------------------|----------|--------|-----------|
| I Test             | Positive | 100mA  |           |
| 1 Test             | Negative | -100mA | JESD78A   |
| V supply over 5.0V | Positive | 8.25V  |           |



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### **Electrical Characteristics** 5

•  $V_{DD}$ =3.3V, Typical system frequency (Unless otherwise noted),  $T_A = 25 \degree C$ 

| Characteristics                               | Symbol               | Test Condition                                  | Min                  | Тур  | Max                  | Units |  |  |
|-----------------------------------------------|----------------------|-------------------------------------------------|----------------------|------|----------------------|-------|--|--|
| Power supply requirement                      | and current o        | consumption                                     | I                    |      |                      |       |  |  |
| Operating voltage                             | V <sub>DD</sub>      |                                                 | 3.0                  |      | 5.5                  | V     |  |  |
| Current consumption                           | I <sub>DD</sub>      | V <sub>DD</sub> = 3.3V,<br>Standby state @10MHz | -                    | 0.50 | -                    | mA    |  |  |
| Reset and input level                         |                      |                                                 |                      |      |                      |       |  |  |
| Internal reset voltage                        | V <sub>DD_RST</sub>  | $T_A = 25 \degree C$                            | -                    | 2.6  | -                    | V     |  |  |
| Input high level                              | VIH                  | $\mid I_{IH} \mid  \leq + 5 \mu A$              | V <sub>DD</sub> *0.6 |      | V <sub>DD</sub> +0.3 | V     |  |  |
| Input low level                               | VIL                  | $\mid I_{IL} \mid  \leq +5 \mu A$               | -0.3                 |      | V <sub>DD</sub> *0.3 | V     |  |  |
| Self calibration time after                   |                      | Slow calibration speed                          | -                    | 100  | -                    |       |  |  |
| system reset                                  | T <sub>CAL</sub>     | Normal calibration speed                        | -                    | 80   | -                    | msec  |  |  |
| system reset                                  |                      | Fast calibration speed                          | -                    | 60   | -                    |       |  |  |
| Internal Pull Up resister of<br>SDA, SCL, INT | $R_{P/U}$            |                                                 | -                    | 30   | -                    | kΩ    |  |  |
| Touch sensing performance                     | 1                    |                                                 | ľ                    |      |                      |       |  |  |
| Minimum detective capacitance difference      | $\Delta C_{MIN}$     |                                                 | 0.1                  | -    | -                    | pF    |  |  |
| Sense input capacitance range <sup>1</sup>    | Cs                   |                                                 | -                    | -    | 50                   | pF    |  |  |
| Output impedance                              | 7                    | $\Delta C > \Delta C_{MIN}$                     | -                    | 12   | -                    | 0     |  |  |
| (open drain)                                  | Zo                   | $\Delta C < \Delta C_{MIN}$                     | -                    | 30M  | -                    | Ω     |  |  |
| System performance                            |                      |                                                 |                      |      |                      |       |  |  |
| Max. output current<br>(LED drive current)    | I <sub>OUT</sub>     | Per unit drive output port                      | -                    | -    | 8.0                  | mA    |  |  |
| LED PWM control <sup>2</sup>                  | N <sub>PWM</sub>     |                                                 | -                    | 16   | -                    | step  |  |  |
| Sensitivity control <sup>3</sup>              |                      |                                                 | -                    | 256  | -                    | step  |  |  |
| Max. I <sup>2</sup> C SCL clock speed         | f <sub>SCL_MAX</sub> | Maximum internal I <sup>2</sup> C clock         | -                    | -    | 2                    | MHz   |  |  |
| Touch expired time                            | T <sub>EX</sub>      | Normal calibration speed                        | -                    | 30   | -                    | sec   |  |  |

<sup>3</sup> Refer to the chapter 8.2.10. Sensitivity register



<sup>1</sup> The sensitivity can be decreased with higher parallel capacitance of CS pin including parasitic capacitance made by neighbor GND or other pattern. The series resistor(under 1kΩ) of CS can be used in noisy condition to avoid mal-function from external surge and ESD.  $^{2}$  Before to the

Refer to the chapter 8.2.13. LED luminance control register

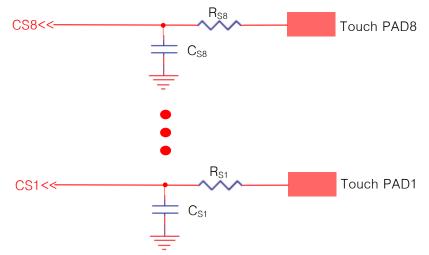
ADSemiconductor®

" Free from Common Mode Noise '

## ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

# 6 ANSG08 Implementation

## 6.1 Typical current consumption


ANSG08 uses internal bias circuit, so internal clock frequency and current consumption is fixed and no external bias circuit is needed. Internal clock frequency and calibration speed can be changed by  $I^2C$  register setting<sup>4</sup>. Faster calibration speed needs more current consumption than normal or slower calibration speed. Slow calibration speed isn't recommended if it has not problem of current consumption.

Internal bias circuit can make the circuit design simple and reduce external components.

## 6.2 CS implementation

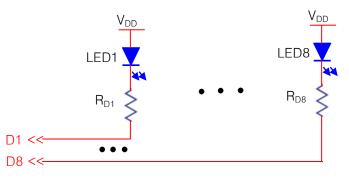
ANSG08 has 256 step selections of sensitivity and internal surge protection resister. Sensitivity of each sensing channel (CS) can be independently controlled on others. External components of CS pin such as series resistor or parallel capacitor isn't necessary. The parallel parasitic capacitance of CS pins caused by touch line, touch pad and neighbor GND or other pattern may affect sensitivity. The sensitivity will be decreased when bigger parallel parasitic capacitance of CS pin is added.

Parallel capacitor ( $C_{S1~S8}$ ) of CS pin is useful in case of detail sensitivity mediation is required such as for complementation sensitivity difference between channels. Same as above parallel parasitic capacitance, sensitivity will be decreased when a big value of parallel capacitor ( $C_{S1~S8}$ ) is used. Under 50pF capacitor can be used as sensitivity meditation capacitor and a few pF is usually used. The  $R_s$ , serial connection resistor of CS pins, may be used to avoid mal-function from external surge and ESD. (It might be optional.) From 200 $\Omega$  to 1k $\Omega$  is recommended for  $R_s$ . Refer to below CS pins application figure.



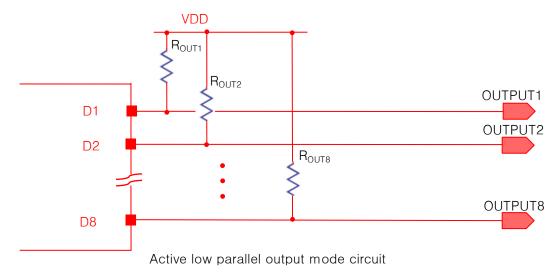
The ANSG08 has eight independent touch sensor input from CS1 to CS8. The internal touch decision process of each channel is separated from others. Therefore eight channel touch key board application can be designed by using only one ANSG08 without coupling problems.

The size and shape of PAD might have influence on the sensitivity. The sensitivity will be optimal when the size of PAD is approximately an half of the first knuckle (it's about  $10 \text{ mm} \times 7 \text{ mm}$ ). The connection line of CS to touch PAD is recommended to be routed as short as possible to prevent from abnormal touch detect caused by connection line. The unused CS pin should not be connected with the ground.


<sup>&</sup>lt;sup>4</sup> Refer to 8.2.6 Clock control register.



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)


#### 6.3 LED drive implementation

ANSG08 has a function to control the LED using D1~D8 ports. For using D1~D8 as LED driver ports, LEDs and resisters must be equipped as below figure, and write the 'port mode" register<sup>5</sup> as '1'. D1 ~ D8 ports can drive LEDs by 'PWM ctrlx' register<sup>6</sup> control. ANSG08 can drive up to 8 LED as below method.



#### **6.4 Parallel** output

ANSG08 acts as active low parallel output mode. Parallel output ports (D1~D8) have an open drain NMOS structure. For this reason, the parallel output mode of ANSG08 needs R<sub>OUT</sub> as below figures. The maximum output drive current is 8mA, so over a few k $\Omega$  must be used as R<sub>OUT</sub>. Normally 10k $\Omega$  is used as R<sub>OUT</sub>.

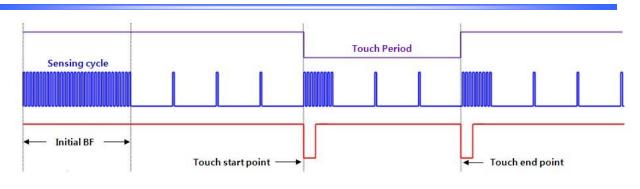


#### 6.5 **INT (Interrupt output) Implementation**

An INT pin is for the touch sensing interrupt output. The interrupt pulse is generated only during short period of every each channel touch start point and touch end point. Interrupt pulse has logical low level. INT has NMOS open drain structure and internal pull-up resister of which value is  $30k\Omega$  typical.

<sup>6</sup> Refer to the chapter 8.2.13. LED luminance control register




**AD Semiconductor Confidential** 13/38

<sup>5</sup> Refer to the chapter 8.2.14. Port mode control register

# **ADSemiconductor**®

" Free from Common Mode Noise "

## ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)



## 6.6 Change initial reset register values (EEPROM writing)

ANSG08 has an EEPROM.

So, initial reset register values can be rewritten.

The erase and write cycle endurance of the EEPROM is at least 1,000.

There are three operation modes about EEPROM read/write. These are automatically load operation mode, writing operation mode and reading operation mode.

## Automatically load operation mode

After power reset, ANSG08 start to read the data of 00H and 7FH address in EEPROM.

ANSG08 automatically loads the data of the EEPROM when the data of 00H is 0xAA and the data of 7FH is 0x55. And then ANSG08 is starting to work with control register values that are loaded from EEPROM. ANSG08 is working with initial control register value when the data of 00H isn't 0xAA or the data of 7FH isn't 0x55.

### Writing operation mode

EEPROM writing provides the flexible reset register values that control all the operation options of ANSG08. So, additional communication programs on MCU for operation option select or register value setting aren't required.

There is only one writing operation mode, all bytes writing mode.

The 'write\_all' bit of 'prom\_cmd' register<sup>7</sup> has to be '1' because all bytes writing mode is activated. And then user can write all registers frame data on EEPROM. Read or write command register is 'prom\_cmd' registers and user can start writing by 'wr\_start' bit of 'prom\_cmd' register setting as '1'. This 'wr\_start' bit of 'prom\_cmd' register is recovered as '0' at ending of writing.

### **Reading operation mode**

When EEPROM data is required to be read, user can read all EEPROM date by reading operation. When the 'read\_all' bit of 'prom\_cmd' register is '0', user can read one byte data that is written on selected address of EEPROM.

When the 'read\_all' bit of 'prom\_cmd' register is '1', user can read all data on EEPROM.

EEPROM read start command bit is 'rd\_start' bit of 'prom\_cmd' register. When the 'rd\_start' bit of 'prom\_cmd' register is '1', ANSG08 starts to read. This 'rd\_start' bit of 'prom\_cmd' register is recovered as '0' at ending of reading.

<sup>&</sup>lt;sup>7</sup> Refer to the chapter 8.2.15. EEPROM control register.

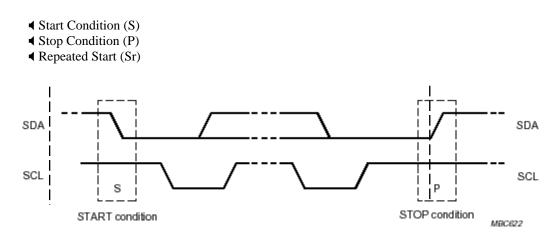


# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### SCL, SDA implementation **6.7**

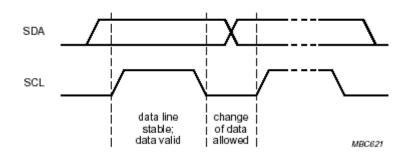
SCL is I<sup>2</sup>C clock input and SDA is I<sup>2</sup>C data input-output. These ports have internal pull-up resistor. SCL has Schmitt trigger input structure to prevent clock signal from being broken. Maximum supported  $I^2C$  clock frequency is 2MHz. SDA has NMOS open drain structure and internal pull-up resister of which value is  $30k\Omega$ typical. So, according to communication speed a few k $\Omega$  resister must be used as pull-up resister for proper data pulse rising time. For more details refer to 'Chapter 9. I<sup>2</sup>C Interface'.




# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### I<sup>2</sup>C Interface 7

#### I<sup>2</sup>C Enable / Disable 7.1


If the SDA or SCL signal goes to low, I<sup>2</sup>C control block is enabled automatically. And if the SDA and SCL signal maintain high during about 2 us, I<sup>2</sup>C control block is disabled automatically also.

#### 7.2 Start & stop condition

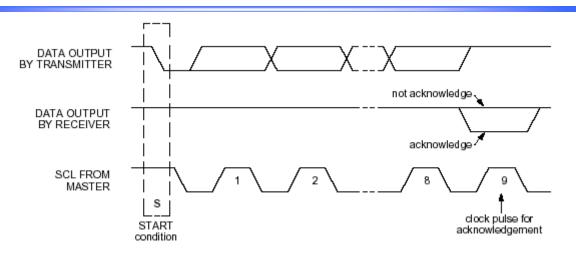


#### 7.3 **Data validity**

The SDA should be stable when the SCL is high and the SDA can be changed when the SCL is low.



#### 7.4 **Byte format**


The byte structure is composed with 8Bit data and an acknowledge signal.

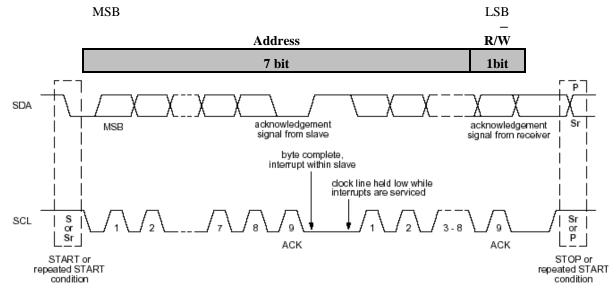
#### 7.5 Acknowledge

It is a check bit whether the receiver gets the data from the transmitter without error or not. The receiver will write '0' when it received the data successfully and '1' if not.



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)




#### 7.6 First byte

#### 7.6.1 Slave address

It is the first byte from the start condition. It is used to access the slave device. The initial chip address of ANSG08 is '48' hexadecimal number.

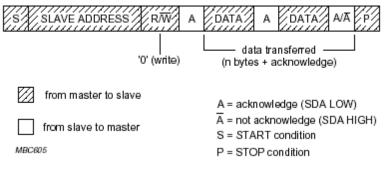
#### 7.6.2 R/W

The direction of data is decided by the bit and it follows the address data.



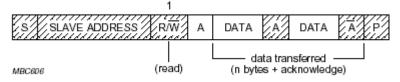
**ADSemiconductor**®

" Free from Common Mode Noise

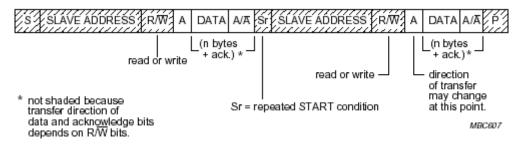

## ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

## 7.7 Transferring data

#### 7.7.1 Write operation


The byte sequence is as follows:

- 1. The first byte gives the device address plus the direction bit (R/W = 0).
- 2. The second byte contains the internal address of the first register to be accessed.
- 3. The next byte is written in the internal register. Following bytes are written in successive internal registers.
- 4. The transfer lasts until stop conditions are encountered.
- 5. The ANSG08 acknowledges every byte transfer.

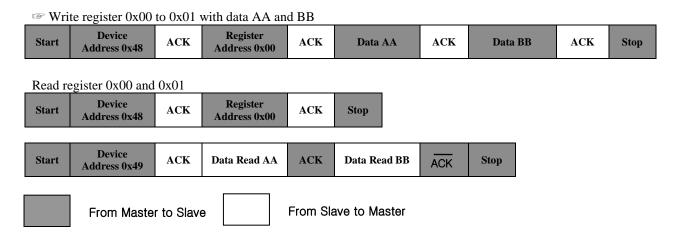



## 7.7.2 Read operation

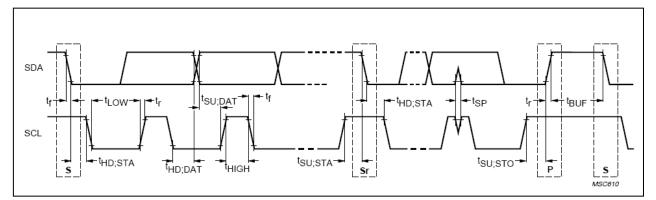
The address of the first register to read is programmed in a write operation without data, and terminated by the stop condition. Then, another start is followed by the device address and R/W= 1. All following bytes are now data to be read at successive positions starting from the initial address.



## 7.7.3 Read/Write Operation







# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### I<sup>2</sup>C write and read operations in normal mode 7.8

The following figure represents the I<sup>2</sup>C normal mode write and read registers.



#### I<sup>2</sup>C timing diagram 7.9



|                                                             | SYMDOL  | 100    | kbps | 4001                 | kbps                 | UNIT |
|-------------------------------------------------------------|---------|--------|------|----------------------|----------------------|------|
| PARAMETER                                                   | SYMBOL  | MIN.   | MAX. | MIN.                 | MAX.                 | UNIT |
| Hold time (repeated)START condition.                        | tHD;STA | 4.0    | -    | 0.6                  | -                    | us   |
| LOW period of the SCL clock                                 | tLOW    | 4.7    | -    | 1.3                  | -                    | us   |
| HIGH period of the SCL clock                                | tHIGH   | 4.0    | -    | 0.6                  | -                    | us   |
| Set-up time for a repeated START condition                  | tSU;STA | 4.7    | -    | 0.6                  | -                    | us   |
| Data hold time                                              | tHD;DAT | 1.0    | -    | -                    | -                    | us   |
| Data set-up time                                            | tSU;DAT | 250    | -    | 100                  | -                    | ns   |
| Rise time of both SDA and SCL signals                       | tr      | -      | 1000 | 20                   | 300                  | ns   |
| Fall time of both SDA and SCL signals                       | tf      | -      | 300  | 20                   | 300                  | ns   |
| Set-up time for STOP condition                              | tSU;STO | 4.0    | -    | 0.6                  | -                    | us   |
| Bus free time between a STOP and START condition            | tBUF    | 4.7    | -    | 1.3                  | -                    | us   |
| Noise margin at the LOW level for each<br>connected device  | VnL     | 0.1VDD | -    | 0.1VDD               | -                    | V    |
| Noise margin at the HIGH level for each<br>connected device | VnH     | 0.2VDD | -    | 0.2VDD               | -                    | V    |
| Input Low level                                             |         |        |      | 0                    | V <sub>DD</sub> *0.2 | V    |
| Input High level                                            |         |        |      | V <sub>DD</sub> *0.8 | V <sub>DD</sub>      | V    |



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### **ANSG08** control register list 8

◀ Note 1 : The unused bits (defined as reserved) in I2C register must be kept to the reset value or refer to the details.

▲ Note 2 : ANSG08 has the special function registers (not be published) that are useful to improve the noise immunity from the CS, RF and so on. And these registers must be kept to the reset value except the case our company recommended. Please refer to the application note (ANSG08 Application Note) if any noise (CS, RF and etc) problem is issued.

▲ Note 3 : The empty bits (defined as '-') in I2C register are zero at read operation. So the empty bits are recommended as zero at write operation.

| Name                   | Addr. | Reset<br>Value |         |                   |           |            |               |                |             |              |
|------------------------|-------|----------------|---------|-------------------|-----------|------------|---------------|----------------|-------------|--------------|
| Ivanie                 | (Hex) | (Bin)          | Bit7    | Bit6              | Bit5      | Bit4       | Bit3          | Bit2           | Bit1        | Bit0         |
| prom_set1              | 00H   | 0000 0000      |         |                   |           | eepron     | n_set1        |                |             |              |
| ch_enable<br>/soft_rst | 01H   | 1111 1111      | ch8_en  | ch7_en            | ch6_en    | ch5_en     | ch4_en        | ch3_en         | ch2_en      | ch1_en       |
| i2c_id                 | 06H   | 0100 1000      |         |                   |           | i2c_id     |               |                |             | wr_bit       |
| output                 | 2AH   | 0000 0000      | o_ch8   | o_ch8 o_ch7 o_ch6 |           |            | o_ch4         | o_ch3          | o_ch2       | o_ch1        |
| clock_ctrl             | 34H   | 0000 0110      |         | init_cal_opt      |           | Reserved   | clk           | _sel           | rb          | sel          |
| global_ctrl1           | 36H   | 0100 1100      |         | response_off_ctr  | 1         |            | response_ctrl |                | bf_mode     | software_rst |
| state_count            | 37H   | 0101 1111      | 0       | 1                 | 0         |            |               | cal_pre_scaler | •           |              |
| global_ctrl2           | 38H   | 1011 1110      | imp_sel | sin_multi_mode    |           | cal_ho     | ld_time       |                | Reserved    | clk_off      |
| sensitivity1           | 39H   | 0001 1100      |         | sensitivity01     |           |            |               |                |             |              |
| sensitivity2           | 3AH   | 0001 1100      |         | sensitivity02     |           |            |               |                |             |              |
| sensitivity3           | 3BH   | 0001 1100      |         | sensitivity03     |           |            |               |                |             |              |
| sensitivity4           | 3CH   | 0001 1100      |         | sensitivity04     |           |            |               |                |             |              |
| sensitivity5           | 3DH   | 0001 1100      |         | sensitivity05     |           |            |               |                |             |              |
| sensitivity6           | 3EH   | 0001 1100      |         | sensitivity06     |           |            |               |                |             |              |
| sensitivity7           | 3FH   | 0001 1100      |         | sensitivity07     |           |            |               |                |             |              |
| sensitivity8           | 40H   | 0001 1100      |         |                   |           | sensiti    | vity08        |                |             |              |
| cal_speed              | 41H   | 0000 0000      | rnd_    | bf_up             | rnd_bf    | _down      | sen_t         | of_up          | sen_bi      | _down        |
| cal_BS_speed           | 42H   | 0000 0000      | rnd_    | bs_up             | rnd_bs    | _down      | sen_bs_up     |                | sen_bs_down |              |
| PWM_ctrl1              | 43H   | 0000 0000      |         | pwm               | _d2       |            |               | pwn            | n_d1        |              |
| PWM_ctrl2              | 44H   | 0000 0000      |         | pwm               | _d4       |            |               | pwn            | n_d3        |              |
| PWM_ctrl3              | 45H   | 0000 0000      |         | pwm_              | _d6       |            |               | pwn            | n_d5        |              |
| PWM_ctrl4              | 46H   | 0000 0000      |         | pwm_              | _d8       |            |               | pwn            | n_d7        |              |
| port_mode              | 4FH   | 0000 0000      | pmod_d8 | pmod_d7           | pmod_d6   | pmod_d5    | pmod_d4       | pmod_d3        | pmod_d2     | pmod_d1      |
| rd_ch_H1               | 50H   | 0000 0000      |         |                   |           | rd_cł      | _H1           |                |             |              |
| rd_ch_L1               | 51H   | 00             | -       | -                 | -         | -          | -             | -              | rd_c        | h_L1         |
| Percent_H              | 52H   | 0000 0000      |         |                   |           | touch_perc | ent[24:17]    |                |             |              |
| Percent_M              | 53H   | 0000 0000      |         |                   |           | touch_per  | cent[16:9]    |                |             |              |
| Percent_L              | 54H   | 0000 0000      |         |                   |           | touch_per  | cent[8:1]     |                |             |              |
| rd_ch_H2               | 56H   | 0000 0000      |         |                   |           | rd_ch      | _H2           |                |             |              |
| rd_ch_L2               | 57H   | 0              | -       | -                 | -         | -          | -             | -              | rd_c        | h_L2         |
| prom_cmd               | 5CH   | 0000           | -       | -                 | write_all | read_all   | -             | -              | wr_start    | rd_start     |
| prom_addr              | 5FH   | 0000 0000      | -       |                   |           |            | eeprom_addr   |                |             |              |
| prom_wr_data           | 60H   | 0000 0000      |         |                   |           | eeprom_    | wr_data       |                |             |              |
| prom_rd_data           | 61H   |                |         |                   |           | eeprom_    | rd_data       |                |             |              |
| prom_set2              | 7FH   | 0000 0000      |         |                   |           | eepron     | n_set2        |                |             |              |

#### I<sup>2</sup>C Register Map 8.1



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### 8.2 **Details**

#### 8.2.1 **EEPROM Set 1**

| Type: R/W |               |      |      |      |        |        |      |      |      |
|-----------|---------------|------|------|------|--------|--------|------|------|------|
| Address   | Register Name | Bit7 | Bit6 | Bit5 | Bit4   | Bit3   | Bit2 | Bit1 | Bit0 |
| 00h       | prom_set1     |      |      |      | eepror | m_set1 |      |      |      |

### Description

The first flag byte for the valid data of EEPROM. If the data of this address isn't 0xAA on EEPROM, all data on EEPROM are invalid. So, the data of this address must be written by 0xAA if user wants to change the reset value using EEPROM.

| Bit name    | Reset value | Function                                                           |
|-------------|-------------|--------------------------------------------------------------------|
| eeprom_set1 | 00000000    | 10101010 : EEPROM data is valid<br>others : EEPROM data is invalid |

#### 8.2.2 Channel enable / reset register

Type: R/W

| Address | Register Name          | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|---------|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 01h     | ch_enable<br>/soft_rst | ch8_en | ch7_en | ch6_en | ch5_en | ch4_en | ch3_en | ch2_en | ch1_en |

Description

Enable, disable and reset of each channel control register.

| Bit name | Reset value | Function                                                                                                                                                                         |
|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| chx_en   | 1           | Channel enable / disable and Channel reset (chx_en is control bit for CSx channel) <ul> <li>0 : Channel disable and sensing channel reset</li> <li>1 : Channel enable</li> </ul> |

#### I<sup>2</sup>C address of ANSG08 8.2.3

Type: R/W

| Address | Register Name | Bit7 | Bit6 | Bit5 | Bit4   | Bit3 | Bit2 | Bit1 | Bit0   |
|---------|---------------|------|------|------|--------|------|------|------|--------|
| 06h     | i2c_id        |      |      |      | i2c_id |      |      |      | wr_bit |

### Description

Chip address of ANSG08 control register. User can change this address value with EEPROM write. During reset period EEPROM data is loaded to registers.

| Bit name | Reset value | Function                                                           |
|----------|-------------|--------------------------------------------------------------------|
| wr_bit   | 0           | Write/Read address selection - 0 : Write address, 1 : Read address |
| i2c_id   | 0100100     | Chip address of ANSG08.                                            |



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### 8.2.4 **Output data**

| Type: R |                      |       |       |       |       |       |       |       |       |
|---------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Address | <b>Register Name</b> | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
| 2Ah     | output               | o_ch8 | o_ch7 | o_ch6 | o_ch5 | o_ch4 | o_ch3 | o_ch2 | o_ch1 |

### Description

The output data register from channel 1 to channel 8.

The reserved bits, [Bit4] of the register address 34h, is recommended that you set to '0'.

| Bit name | Reset value | Function                                                                               |
|----------|-------------|----------------------------------------------------------------------------------------|
| o_chx    | Read only   | o_chx is output bit for CSx channel<br>↓ 0 : No touch detected<br>↓ 1 : Touch detected |

#### 8.2.5 **Clock control register**

Type: R/W

| Address | Register Name | Bit7 | Bit6         | Bit5 | Bit4     | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|---------------|------|--------------|------|----------|------|------|------|------|
| 34h     | clock_ctrl    |      | init_cal_opt |      | Reserved | clk  | _sel | rb_  | _sel |

# Description

This register controls the global options of ANSG08,

| Bit name     | Reset value | Function                                                              |
|--------------|-------------|-----------------------------------------------------------------------|
|              | 10          | ANSG08 provides three internal calibration speeds with this register. |
| rb_sel       | $10 (01^8)$ | ♣ 00, 01 : Fast                                                       |
| 10_301       |             | 4 10 : Normal                                                         |
|              |             | <b>↓</b> 11 : Slow                                                    |
|              |             | ANSG08 provides four internal calibration speeds with this register.  |
|              |             | 4 00 : Fast                                                           |
| clk_sel      | 01          | 4 01 : Normal                                                         |
|              |             | <b>↓</b> 10 : Slow                                                    |
|              |             | ↓ 11 : Slowest                                                        |
| init_cal_opt | 000         | To control the initial BF time.                                       |
| Init_cal_opt | 000         | $\downarrow$ (init_cal_opt[2:0]+1) * 320 *1-Period <sup>9</sup> (ms)  |

#### 8.2.6 **Global option control register 1**

Type: R/W

| Address | Register Name | Bit7 | Bit6         | Bit5 | Bit4 | Bit3          | Bit2 | Bit1    | Bit0             |
|---------|---------------|------|--------------|------|------|---------------|------|---------|------------------|
| 36h     | global_ctrl1  | re   | sponse_off_c | etrl |      | response_ctrl |      | bf_mode | software<br>_rst |

### Description

| Bit name          | Reset value | Function                                                                                                            |
|-------------------|-------------|---------------------------------------------------------------------------------------------------------------------|
| software_rst      | 0           | Software reset control bit. Reset the data of all sensing channel.<br>4 0 : No reset<br>4 1 : Reset                 |
| bf_mode           | 0           | Operation mode selection<br>• 0 : Normal mode<br>• 1 : BF mode                                                      |
| response_ctrl     | 011         | Numbers of continuous touch detections for touch decision.<br>response_ctrl[2:0] + 1 (Maximum time : 7)             |
| response_off_ctrl | 010         | Numbers of continuous touch off detections for touch off decision.<br>response_off_ctrl[2:0] + 1 (Maximum time : 7) |

<sup>8</sup> The reset value of the ANSG08SL and ANSG08SH.

<sup>9</sup> 1-Period means that the time from the current sensing burst to the next sensing burst. And the number, 320 is the time control constant value.



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### 8.2.7 State count control register

| Type: R/ | W |
|----------|---|
|----------|---|

| Address | Register Name | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2           | Bit1 | Bit0 |
|---------|---------------|------|------|------|------|------|----------------|------|------|
| 37h     | state_count   | 1    | 1    | 1    |      | C    | Bit3 Bit2 Bit1 |      |      |

## Description

| Register to set the | pre-scaler for the | calibration speed. |
|---------------------|--------------------|--------------------|
|                     |                    |                    |

| Bit name       | Reset value | Function                                                                        |
|----------------|-------------|---------------------------------------------------------------------------------|
| cal_pre_scaler | 1 1111      | The pre-scaler for the calibration speed.<br>cal_pre_scaler[4:0] *1-Period (ms) |

#### Global option control register 2 8.2.8

Type: R/W

| Address | Register Name | Bit7    | Bit6               | Bit5 | Bit4   | Bit3    | Bit2 | Bit1     | Bit0    |
|---------|---------------|---------|--------------------|------|--------|---------|------|----------|---------|
| 38h     | global_ctrl2  | imp_sel | sin_mult<br>i_mode |      | cal_ho | ld_time |      | Reserved | clk_off |

#### Description

This register controls the global options of ANSG08.

The reserved bits, [Bit1] of the register address 38h, is recommended that you set to '0'.

| Bit name           | Reset value                                   | Function                                                                                                                                                                               |
|--------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clk_off            | 0                                             | System clock off control bit.<br>4 0 : Not clock off<br>4 1 : Clock off                                                                                                                |
| cal_hold_tim<br>e  | 1111<br>(0000 <sup>10</sup> )                 | Output expiration Time control.<br>cal_hold_time[3:0] * 512 <sup>11</sup> * 1-Period (ms)<br>The output expiration time is infinite when the data of the "cal_hold_time"<br>is "0000". |
| sin_multi_mo<br>de | $\begin{pmatrix} 0 \\ (1^{10}) \end{pmatrix}$ | Single/Multi output operation mode selection bit.<br>4 0 : Single output mode<br>4 1 : Multi output mode                                                                               |
| imp_sel            | 1                                             | Impedance of the sensing wire of all channels control bit.<br>4 0 : High impedance<br>4 1 : Low impedance except sensing period.                                                       |

<sup>&</sup>lt;sup>11</sup> The number, 512 is the time control constant value.



 $<sup>^{\</sup>rm 10}\,$  The reset value of the ANSG08SL and ANSG08SH.

# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### Sensitivity register 8.2.9

#### Type: R/W

| Address | Register Name | Bit7 | Bit6          | Bit5 | Bit4   | Bit3    | Bit2 | Bit1 | Bit0 |  |
|---------|---------------|------|---------------|------|--------|---------|------|------|------|--|
| 39Н     | sensitivity1  |      | sensitivity01 |      |        |         |      |      |      |  |
| 3AH     | sensitivity2  |      | sensitivity02 |      |        |         |      |      |      |  |
| 3BH     | sensitivity3  |      | sensitivity03 |      |        |         |      |      |      |  |
| 3CH     | sensitivity4  |      |               |      | sensit | ivity04 |      |      |      |  |
| 3DH     | sensitivity5  |      |               |      | sensit | ivity05 |      |      |      |  |
| 3EH     | sensitivity6  |      |               |      | sensit | ivity06 |      |      |      |  |
| 3FH     | sensitivity7  |      | sensitivity07 |      |        |         |      |      |      |  |
| 40H     | sensitivity8  |      |               |      | sensit | ivity08 |      |      |      |  |

#### Description

The sensitivity of channel is possible to adjust by the "sensitivity1~sensitivity8" registers. The following table show detail information of sensitivity.

The lower value of these register ANSG08 has, the higher sensitivity ANSG08 has. And if user wants to set higher sensitivity over 0.9%, it is recommended to refer to the application note (ANSG08\_Application\_Note).

| Bit name      | Reset value | Function                                                                                          |
|---------------|-------------|---------------------------------------------------------------------------------------------------|
| sensitivity0x | 0001 1100   | Sensitivities of each channel.<br>Sensitivity of CSx channel: {(sensitivity0x[7:0] x 0.025)} (%). |

## 8.2.10 Calibration speed control register

Type: R/W

| Address | Register Name | Bit7      | Bit6 | Bit5   | Bit4  | Bit3  | Bit2  | Bit1   | Bit0   |
|---------|---------------|-----------|------|--------|-------|-------|-------|--------|--------|
| 41H     | cal_speed     | rnd_bf_up |      | rnd_bf | _down | sen_l | of_up | sen_bf | f_down |

#### Description

Calibration speed can be controlled by this 'cal speed' register at BF mode.

| Bit name    | Reset value | Function                                                      |                          |  |  |  |  |  |  |  |
|-------------|-------------|---------------------------------------------------------------|--------------------------|--|--|--|--|--|--|--|
|             |             | Sense channel down calibration speed at BF mode control bits. |                          |  |  |  |  |  |  |  |
| sen_bf_down | 10          | ↓ 00 : Fastest                                                | 📥 01 : Fast              |  |  |  |  |  |  |  |
|             |             | 📥 10 : Normal                                                 | <b>↓</b> 11 : Slow       |  |  |  |  |  |  |  |
|             |             | Sense channel up calibration speed at E                       | 3F mode control bits.    |  |  |  |  |  |  |  |
| sen_bf_up   | 01          | 4 00 : Fastest                                                | 4 01 : Fast              |  |  |  |  |  |  |  |
|             |             | 📥 10 : Normal                                                 | <b>↓</b> 11 : Slow       |  |  |  |  |  |  |  |
|             |             | RND channel down calibration speed a                          | at BF mode control bits. |  |  |  |  |  |  |  |
| rnd_bf_down | 10          | 4 00 : Fastest                                                | 🖊 01 : Fast              |  |  |  |  |  |  |  |
|             |             | 📥 10 : Normal                                                 | <b>↓</b> 11 : Slow       |  |  |  |  |  |  |  |
|             |             | RND channel up calibration speed at B                         | F mode control bits.     |  |  |  |  |  |  |  |
| rnd_bf_up   | 01          | 4 00 : Fastest                                                | 🖊 01 : Fast              |  |  |  |  |  |  |  |
|             |             | 📥 10 : Normal                                                 | <b>↓</b> 11 : Slow       |  |  |  |  |  |  |  |



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

## 8.2.11 Calibration speed control register at BS mode

Type: R/W

| Address | Register Name | Bit7      | Bit6 | Bit5   | Bit4  | Bit3  | Bit2  | Bit1   | Bit0   |
|---------|---------------|-----------|------|--------|-------|-------|-------|--------|--------|
| 42H     | cal_BS_speed  | rnd_bs_up |      | rnd_bs | _down | sen_b | os_up | sen_bs | s_down |

### Description

Calibration speed can be controlled by this 'cal\_BS\_speed' register at BS mode.

| Bit name    | Reset value | Function                                                  |                                                      |  |  |  |  |  |
|-------------|-------------|-----------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|
|             |             | Sense channel down calibration speed                      | at BS mode control bits.                             |  |  |  |  |  |
| sen_bs_down | 10          | ↓ 00 : Fastest                                            | 📥 01 : Fast                                          |  |  |  |  |  |
|             |             | 🖊 10 : Normal                                             | <b>↓</b> 11 : Slow                                   |  |  |  |  |  |
|             |             | Sense channel up calibration speed at                     | BS mode control bits.                                |  |  |  |  |  |
| sen_bs_up   | 01          | 4 00 : Fastest                                            | \downarrow 01 : Fast                                 |  |  |  |  |  |
|             |             | 📥 10 : Normal                                             | <b>↓</b> 11 : Slow                                   |  |  |  |  |  |
|             |             | RND channel down calibration speed                        | at BS mode control bits.                             |  |  |  |  |  |
| rnd_bs_down | 10          | <ul> <li>4 00 : Fastest</li> <li>4 10 : Normal</li> </ul> | <ul> <li>↓ 01 : Fast</li> <li>↓ 11 : Slow</li> </ul> |  |  |  |  |  |
|             |             | RND channel up calibration speed at I                     | 3S mode control bits.                                |  |  |  |  |  |
| rnd_bs_up   | 01          | <ul> <li>↓ 00 : Fastest</li> <li>↓ 10 : Normal</li> </ul> | <ul> <li>↓ 01 : Fast</li> <li>↓ 11 : Slow</li> </ul> |  |  |  |  |  |

## 8.2.12 LED luminance control register

## Type: R/W

| Address | Register Name | Bit7 | Bit6 | Bit5 | Bit4 | Bit3   | Bit2 | Bit1 | Bit0 |  |  |
|---------|---------------|------|------|------|------|--------|------|------|------|--|--|
| 43h     | PWM_ctrl1     |      | pwn  | n_d2 |      | pwm_d1 |      |      |      |  |  |
| 44h     | PWM_ctrl2     |      | pwn  | n_d4 |      | pwm_d3 |      |      |      |  |  |
| 45h     | PWM_ctrl3     |      | pwn  | 1_d6 |      | pwm_d5 |      |      |      |  |  |
| 46h     | PWM_ctrl4     |      | pwn  | n_d8 |      |        | pwn  | n_d7 |      |  |  |

### Description

LED luminance can be controlled by "PWM\_ctrlx" register.

| Bit name | Reset value | Function                                                                                               |
|----------|-------------|--------------------------------------------------------------------------------------------------------|
| pwm_dx   | 0000        | The LED PWM control bits of Dx port.<br>4 0000 : The minimum low duty<br>4 1111 : The maximum low duty |

## 8.2.13 Port mode control register

Type: R/W

| Address | Register Name | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|---------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|
| 4Fh     | port_mode     | pmod_d8 | pmod_d7 | pmod_d6 | pmod_d5 | pmod_d4 | pmod_d3 | pmod_d2 | pmod_d1 |

### Description

This register controls the mode of output port.

| Bit name | Reset value | Function                                                                                                     |
|----------|-------------|--------------------------------------------------------------------------------------------------------------|
| pmod_dx  | 0           | Select the output port operation mode of each channel.<br>4 0 : Parallel output mode<br>4 1 : LED drive mode |



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

| 8.2.14 | Sense, | reference | count | read | register |
|--------|--------|-----------|-------|------|----------|
|--------|--------|-----------|-------|------|----------|

| Type: R |               |      |                      |      |            |            |      |      |      |  |  |  |  |
|---------|---------------|------|----------------------|------|------------|------------|------|------|------|--|--|--|--|
| Address | Register Name | Bit7 | Bit6                 | Bit5 | Bit4       | Bit3       | Bit2 | Bit1 | Bit0 |  |  |  |  |
| 50h     | rd_ch_H1      |      | rd_ch_H1             |      |            |            |      |      |      |  |  |  |  |
| 51h     | rd_ch_L1      | -    | -                    | -    | -          | -          | -    | rd_c | h_L1 |  |  |  |  |
| 52h     | Percent_H     |      | touch_percent[25:18] |      |            |            |      |      |      |  |  |  |  |
| 53h     | Percent_M     |      |                      |      | touch_perc | ent[17:10] |      |      |      |  |  |  |  |
| 54h     | Percent_L     |      |                      |      | touch_pe   | rcent[9:2] |      |      |      |  |  |  |  |
| 56h     | rd_ch_H2      |      | rd_ch_H2             |      |            |            |      |      |      |  |  |  |  |
| 57h     | rd_ch_L2      | -    | -                    | -    | -          | -          | -    | rd_c | h_L2 |  |  |  |  |

## Description

ANSG08 provides the special function to read sense count of each channels or reference count.

| Bit name             | Reset value | Function                                                                                                                                                                                                                                                                                                                                         |
|----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rd_ch_H1             | Read only   | Read channel indication register.         4       00000001 : -         4       00000010 : R.N.D channel         4       0000100 : CS1 channel         4       00001000 : CS2 channel         4       00010000 : CS3 channel         4       00100000 : CS4 channel         4       01000000 : CS5 channel         4       10000000 : CS6 channel |
| rd_ch_L1             | Read only   | Read channel indication register.<br>4 01 : CS7 channel<br>4 10 : CS8 channel                                                                                                                                                                                                                                                                    |
| touch_percent[24:17] | Read only   | The percent data of R.N.D channel and sense channels.<br>[25:18] bits of the touch percent data.                                                                                                                                                                                                                                                 |
| touch_percent[16:9]  | Read only   | The percent data of R.N.D channel and sense channels.<br>[17:10] bits of the touch percent data.                                                                                                                                                                                                                                                 |
| touch_percent[8:1]   | Read only   | The percent data of R.N.D channel and sense channels.<br>[9:2] bits of the touch percent data.                                                                                                                                                                                                                                                   |
| rd_ch_H2             | Read only   | Read channel indication register.         4       00000001 : -         4       00000100 : R.N.D channel         4       0000100 : CS1 channel         4       00001000 : CS2 channel         4       00010000 : CS3 channel         4       00100000 : CS4 channel         4       01000000 : CS5 channel         4       10000000 : CS6 channel |
| rd_ch_L2             | Read only   | Read channel indication register.<br>4 01 : CS7 channel<br>4 10 : CS8 channel                                                                                                                                                                                                                                                                    |



## ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### 8.2.15 EEPROM control register (EEPROM command)

| Address | Register Name | Bit7 | Bit6 | Bit5      | Bit4     | Bit3 | Bit2 | Bit1     | Bit0     |
|---------|---------------|------|------|-----------|----------|------|------|----------|----------|
| 5Ch     | prom_cmd      | 0    | 0    | write_all | read_all | 0    | 0    | wr_start | rd_start |

## Description

EEPROM commands to access.

The reset value of I2C register that is presented in this specification sheet can be not compatible with the reset value of the real IC because the ANSG08 is possible to change the reset value of I2C registers with EEPROM writing operation.

| Bit name  | Reset value | Function                                                                                                          |
|-----------|-------------|-------------------------------------------------------------------------------------------------------------------|
| rd_start  | 0           | Reading the EEPROM start command bit.<br>4 0 : Don't start<br>4 1 : Start to read                                 |
| wr_start  | 0           | Writing on the EEPROM start command bit.<br>4 0 : Don't write<br>4 1 : Start to write                             |
| read_all  | 0           | Unit of reading the EEPROM control bit.<br>4 0 : 1-Byte reading<br>4 1 : All bytes of the EEPROM reading          |
| write_all | 0           | Unit of writing on the EEPROM control bit.<br>4 0 : No writing<br>4 1 : All bytes of selected EEPROM cell writing |

## 8.2.16 EEPROM data address select register

Type: R/W

| Address | Register Name | Bit7 | Bit6        | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|---------------|------|-------------|------|------|------|------|------|------|
| 5Fh     | prom_addr     | -    | eeprom_addr |      |      |      |      |      |      |

### Description

Register for the specific address of the EEPROM.

User can read the EEPROM data of specific address by leaving 'read\_all' bit in the 'prom\_cmd' register '0'.

| Bit name  | Reset    | Function                                                         |
|-----------|----------|------------------------------------------------------------------|
| prom_addr | 00000000 | Select specific address of EEPROM.<br>eeprom_addr[6:0] : Address |



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

## 8.2.17 EEPROM data register to read

| Type: R |               |      |      |      |         |          |      |      |      |
|---------|---------------|------|------|------|---------|----------|------|------|------|
| Address | Register Name | Bit7 | Bit6 | Bit5 | Bit4    | Bit3     | Bit2 | Bit1 | Bit0 |
| 61h     | prom_rd_data  |      |      |      | eeprom_ | _rd_data |      |      |      |

## Description

The data register for reading data from specific address of selected EEPROM cell.

| Bit name     | Reset | Function                                                                  |
|--------------|-------|---------------------------------------------------------------------------|
| prom_rd_data |       | Data register for reading the EEPROM data.<br>eeprom_rd_data [7:0] : Data |

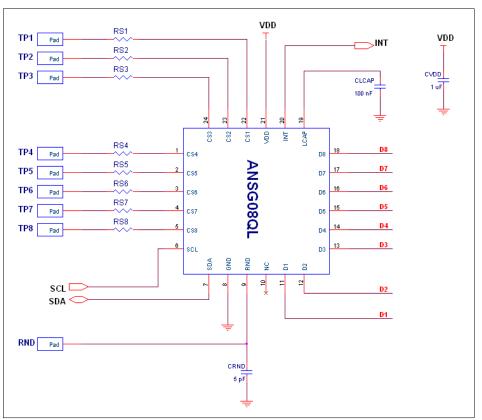
# 8.2.18 EEPROM Set 2

Type: R/W

| Address | Register Name | Bit7 | Bit6 | Bit5 | Bit4   | Bit3   | Bit2 | Bit1 | Bit0 |
|---------|---------------|------|------|------|--------|--------|------|------|------|
| 7Fh     | prom_set2     |      |      |      | eepror | m_set2 |      |      |      |

### Description

The second flag byte for the valid data of EEPROM. If the data of this address isn't 0x55 on EEPROM, all data on EEPROM are invalid. So, the data of this address must be written by 0x55 if user wants to change the reset value using EEPROM.


| Bit name    | Reset value | Function                                                           |
|-------------|-------------|--------------------------------------------------------------------|
| eeprom_set2 | 0000000     | 01010101 : EEPROM data is valid<br>others : EEPROM data is invalid |



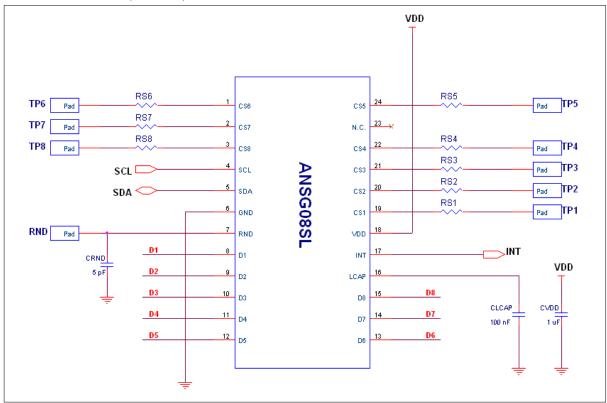
ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

# 9 Recommended Circuit Diagram

# 9.1 ANSG08QL (24 QFN)



ANSG08QL (24 QFN) Application Example Circuit


- ✓ ANSG08QL is reset by internal reset circuit. VDD voltage rising time should be shorter than 100msec for proper operation.
- ✓ Normally, R.N.D pin dose not connection to anywhere. But, in radio frequency noise environment, R.N.D pin must form a pattern line on PCB and 5 pF is recommended for the parallel capacitor of R.N.D pin.
- ✓ The VDD periodic voltage ripple over 50mV and the ripple frequency is lower than 10 kHz can cause wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be separated from other circuit. Especially LED driver power line or digital switching circuit power line certainly should be treated to be separated from touch circuit.
- ✓ The CS patterns also should be routed as short as possible and the width of line might be about 0.25mm.
- ✓ Parallel capacitor of CS pin could be useful in case detail sensitivity mediation is required such as for complementation sensitivity difference between channels.
- ✓ Serial connection resistor of CS pins may be used to avoid mal-function from external surge and ESD and the closer to IC(ANSG08QL), the stronger immunity against mal-function and ESD is.
- ✓ The capacitor that is between VDD and GND is an obligation. It should be located as close as possible from ANSG08QL.
- $\checkmark$  The CS pattern routing should be formed by bottom metal (opposite metal of touch PAD).
- ✓ The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent external noise from interfere with sensing frequency.

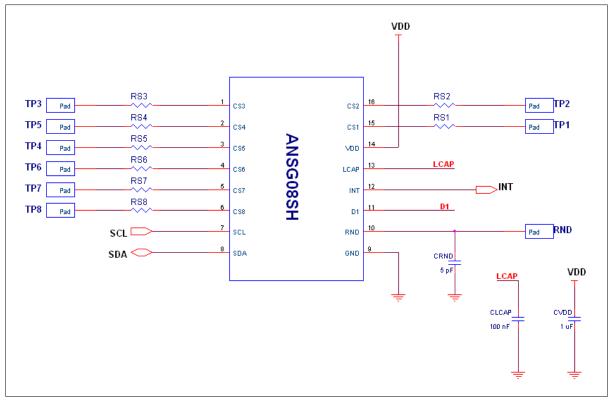


AD Semiconductor Confidential 29 / 38

# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### 9.2 ANSG08SL (24 SOP)




ANSG08SL (24 SOP) Application Example Circuit

- $\checkmark$ ANSG08SL is reset by internal reset circuit. VDD voltage rising time should be shorter than 100msec for proper operation.
- ✓ Normally, R.N.D pin dose not connection to anywhere. But, in radio frequency noise environment, R.N.D pin must form a pattern line on PCB and 5 pF is recommended for the parallel capacitor of R.N.D pin.
- $\checkmark$  The VDD periodic voltage ripple over 50mV and the ripple frequency is lower than 10 kHz can cause wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be separated from other circuit. Especially LED driver power line or digital switching circuit power line certainly should be treated to be separated from touch circuit.
- The CS patterns also should be routed as short as possible and the width of line might be about 0.25mm.  $\checkmark$
- ✓ Parallel capacitor of CS pin could be useful in case detail sensitivity mediation is required such as for complementation sensitivity difference between channels.
- ✓ Serial connection resistor of CS pins may be used to avoid mal-function from external surge and ESD and the closer to IC(ANSG08SL), the stronger immunity against mal-function and ESD is.
- The capacitor that is between VDD and GND is an obligation. It should be located as close as possible  $\checkmark$ from ANSG08SL.
- $\checkmark$ The CS pattern routing should be formed by bottom metal (opposite metal of touch PAD).
- ✓ The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent external noise from interfere with sensing frequency.



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

#### 9.3 ANSG08SH (16 SOP)

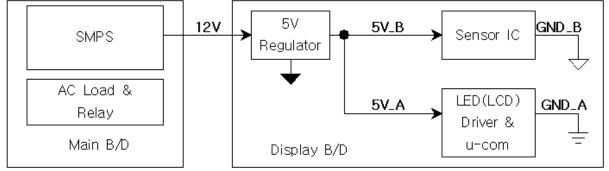


ANSG08SH (16 SOP) Application Example Circuit

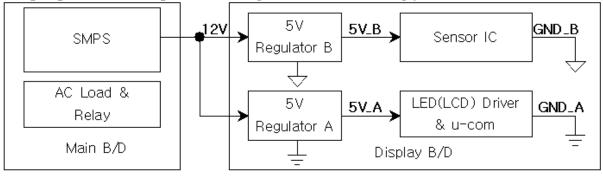
- ANSG08SH is reset by internal reset circuit. VDD voltage rising time should be shorter than 100msec for proper operation.
- ✓ Normally, R.N.D pin dose not connection to anywhere. But, in radio frequency noise environment, R.N.D pin must form a pattern line on PCB and 5 pF is recommended for the parallel capacitor of R.N.D pin.
- ✓ The VDD periodic voltage ripple over 50mV and the ripple frequency is lower than 10 kHz can cause wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be separated from other circuit. Especially LED driver power line or digital switching circuit power line certainly should be treated to be separated from touch circuit.
- $\checkmark$ The CS patterns also should be routed as short as possible and the width of line might be about 0.25mm.
- $\checkmark$ Parallel capacitor of CS pin could be useful in case detail sensitivity mediation is required such as for complementation sensitivity difference between channels.
- ✓ Serial connection resistor of CS pins may be used to avoid mal-function from external surge and ESD and the closer to IC(ANSG08SH), the stronger immunity against mal-function and ESD is.
- The capacitor that is between VDD and GND is an obligation. It should be located as close as possible from ANSG08SH.
- $\checkmark$ The CS pattern routing should be formed by bottom metal (opposite metal of touch PAD).
- The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent  $\checkmark$ external noise from interfere with sensing frequency.



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)


# 9.4 Example – Power Line Split Strategy PCB Layout

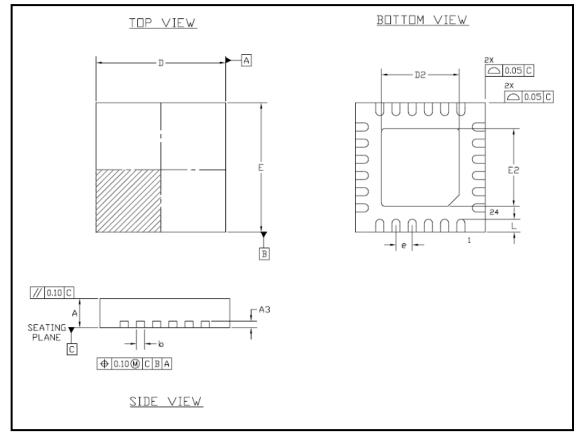
## A. Not split power Line (Bad power line design)




- $\checkmark$  The The noise that is generated by AC load or relay can be loaded at 5V power line.
- ✓ A big inductance might be appeared in case of the connection line between main board and display board is too long, moreover the voltage ripple could be generated by LED (LCD) display driver at VDD (5V).

## B. Split power Line (One 5V regulator used) – Recommended




# C. Split power Line (Separated 5V regulator used) – Strongly recommended



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

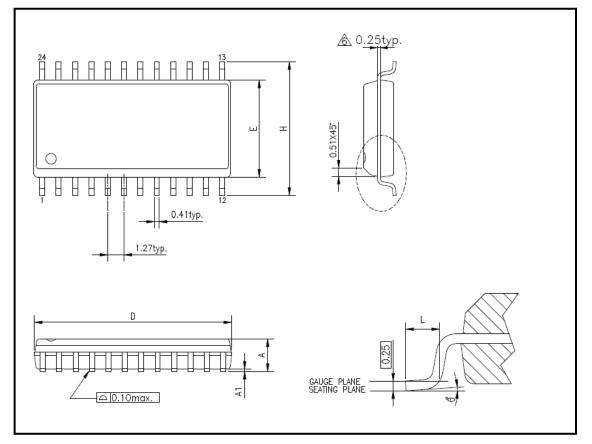
# **10 MECHANICAL DRAWING**

# 10.1 Mechanical Drawing of ANSG08QL (24 QFN Full lead type)



| 5                     |           |           | СПМ    |           |          |       |  |  |
|-----------------------|-----------|-----------|--------|-----------|----------|-------|--|--|
| ľ Ž                   |           |           |        |           |          |       |  |  |
| S<br>Y<br>M<br>B<br>D | DIMENS    | IONS MILL | IMETER | DI        | MENSIONS | INCH  |  |  |
| Ē                     | MIN.      | NDM.      | MAX.   | MIN.      | NDM.     | MAX.  |  |  |
| Α                     |           | S         | EE VAR | IATION "  | A.       |       |  |  |
| A3                    | C         | 0.203 REI | F      | 0.008 REF |          |       |  |  |
| ю                     | 0.20      | 0.25      | 0.30   | 0.008     | 0.010    | 0.012 |  |  |
| D                     | 3.925     | 4.00      | 4.075  | 0.154     | 0.157    | 0.160 |  |  |
| D2                    | 2.30      | 2.40      | 2.50   | 0.090     | 0.094    | 0.098 |  |  |
| Е                     | 3.925     | 4.00      | 4.075  | 0.154     | 0.157    | 0.160 |  |  |
| E2                    | 2.30      | 2.40      | 2.50   | 0.090     | 0.094    | 0.098 |  |  |
| e                     | 0.500 BSC |           |        | 0.020 BSC |          |       |  |  |
| L                     | 0.35      | 0.40      | 0.45   | 0.013     | 0.015    | 0.017 |  |  |

| S<br>Y      |        |           | VARIAT | ION "A          | ,     |       |  |
|-------------|--------|-----------|--------|-----------------|-------|-------|--|
| M<br>B<br>D | DIMENS | IONS MILL | IMETER | DIMENSIONS INCH |       |       |  |
| Ē           | MIN.   | NDM.      | MAX.   | MIN.            | NDM.  | MAX.  |  |
| QFN         | 0.85   | 0.90      | 0.95   | 0.033           | 0.035 | 0.037 |  |
| TQFN        | 0.70   | 0.75      | 0.80   | 0.027           | 0.029 | 0.031 |  |


#### NDTES :

- 1. DIMENSION AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSIONS : MILLIMETER, CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT.
- 3. DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM. FROM TERMINAL TIP.

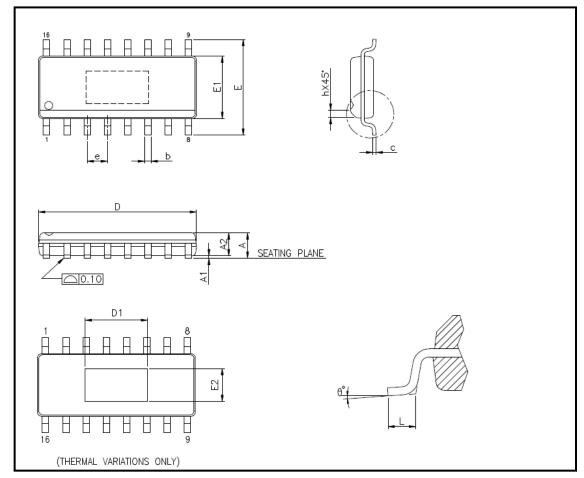


ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

## 10.2 Mechanical Drawing of ANSG08SL (24 SOP)



| 1 |         |       | NOV   | 14437     |
|---|---------|-------|-------|-----------|
|   | SYMBOLS | MIN.  | NOM   | MAX.      |
|   | A       |       | —     | 2.64      |
|   | A1      | 0.10  | —     | —         |
| A | D       | 15.24 | —     | 15.70     |
|   | E       | 7.42  | 7.52  | 7.59      |
|   | Н       | 10.29 | 10.46 | 10.64     |
|   | L       | 0.53  | 0.79  | 1.04      |
|   | θ°      | 0     | 4     | 8         |
|   |         |       |       | UNIT : MM |


NOTES:

- A1.JEDEC OUTLINE : N/A.
  - 2.DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED .25mm (.010in) PER SIDE.
  - 3.DIMENSIONS "E" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED .25mm (.010in) PER SIDE.



# ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

## 10.3 Mechanical Drawing of ANSG08SH (16 SOP)



|         | STAN | DARD | THER     | MAL  |  |
|---------|------|------|----------|------|--|
| SYMBOLS | MIN- | MAX. | MIN.     | MAX. |  |
| Α       | -    | 1.75 | -        | 1.70 |  |
| A1      | 0.10 | 0.25 | 0.00     | 0.15 |  |
| A2      | 1.25 | -    | 1.25     | -    |  |
| b       | 0.31 | 0.51 | 0.31     | 0.51 |  |
| с       | 0.10 | 0.25 | 0.10     | 0.25 |  |
| D       | 9.90 | BSC  | 9.90 BSC |      |  |
| E       | 6.00 | BSC  | 6.00 BSC |      |  |
| E1      | 3.90 | BSC  | 3.90 BSC |      |  |
| е       | 1.27 | BSC  | 1.27     | BSC  |  |
| L       | 0.40 | 1.27 | 0.40     | 1.27 |  |
| h       | 0.25 | 0.50 | 0.25     | 0.50 |  |
| θ°      | 0    | 8    | 0        | 8    |  |

MIN.

1.68

UNIT : mm

THERMALLY ENHANCED DIMENSIONS E2

MAX.

2.41

MAX 3.86 4.57

D1

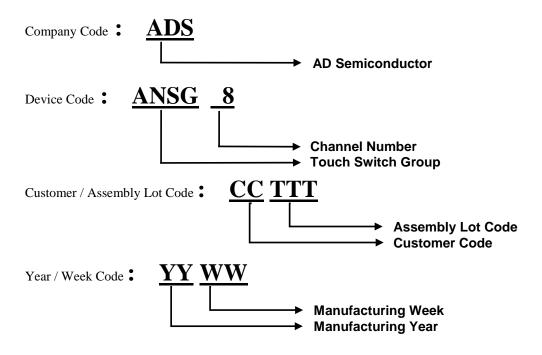
MIN.

UNIT : mm

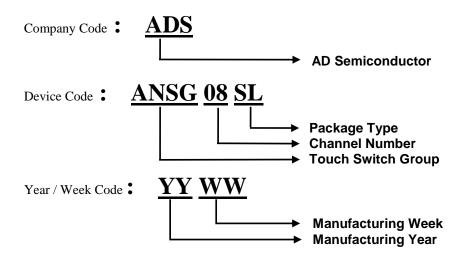
NOTES:

- NOTES: 1.JEDEC OUTLINE : MS-012 AC REV.F (STANDARD) MS-012 BC REV.F (THERMAL) 2.DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15mm. PER SIDE. DIMENSIONS "D" DOES NOT INCLUDE INTO LED.
- S.DIMENSIONS "E1" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25mm PER SIDE.




PAD SIZE

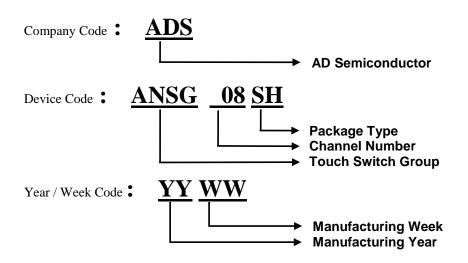
95X18E


ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

# **11 MARKING DESCRIPTION**

# 11.1 Marking Description of ANSG08QL (24 QFN)




# 11.2 Marking Description of ANSG08SL (24 SOP)





ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

# 11.3 Marking Description of ANSG08SH (16 SOP)





ANSG08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

**NOTES:** 

## LIFE SUPPORT POLICY

AD SEMICONDUCTOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF AD SEMICONDUCTOR CORPORATION

The ADS logo is a registered trademark of ADSemiconductor

© 2006 ADSemiconductor - All Rights Reserved

www.adsemicon.com www.adsemicon.co.kr



**AD Semiconductor Confidential** 38/38