ATIF08

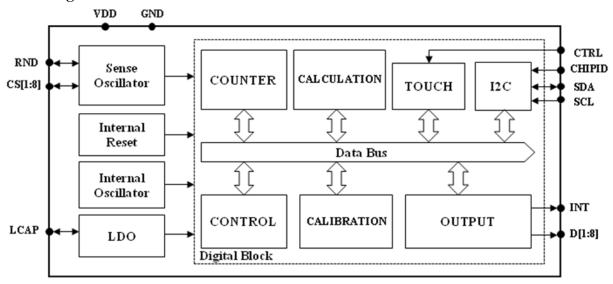
ATIF08 (8-CH Auto Sensitivity Calibration Capacitive Touch Sensor)

SPECIFICATION VER. 1.1

General

The ATIF08 is 8-Channel capacitive sensor with auto sensitivity calibration. And the supply voltage range is from 3.0 to 5.5V.

The ATIF08 offers LED drivers with 16 steps dimming controller. The D[1:8] ports can be used for PWM output for LED dimming control.


The result of touch sensing can be checked by two kind of interface. One is parallel output port(D[1:8]). D[1:8] is touch sensing result of CS[1:8]. The other is I^2C serial interface. I2C interface might be useful when the MCU IO or connector resource is not enough in the application.

The ATIF08PN(28SSOP) has CTRL and CHIPID. CTRL is sensitivity control input pin(VDD, GND). CHIPID is Chip ID selection input pin. These ports have internal pull-up resistor($2M\Omega$).

Feature

- 8-Channel capacitive sensor with auto sensitivity calibration
- Available LED PWM drive up to 8
- Multi interface I2C serial interface / Parallel outputs
- Selectable output operation mode (Single output / Multi output)
- Adjustable 256 steps sensitivity
- Almost no external component needed
- Low current consumption
- Embedded common and normal noise elimination circuit
- RoHS compliant 24SSOP / 28SSOP packages
- Moisture sensitivity level 3 (MSL3)
- 3.0V to 5.5V operation
- Power consumption
- Standby state: 0.55mA (@3.3V)

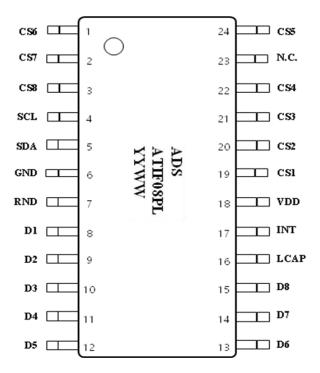
Block Diagram

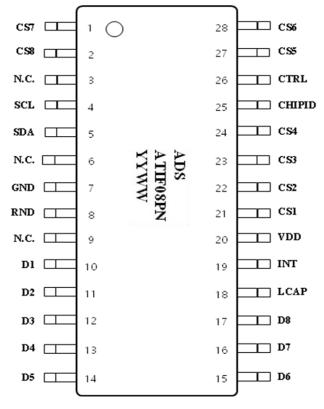
Application

- Multimedia Devices(TV, DVD player, Blueray player, Digital photo frame, Home theater system)
- Home Appliance(Refrigerator, Air cleaner, Air conditioner, Washing machine, Microwave oven)
- Sealed control panels, keypads
- Door key-lock matrix application

Ordering Information

Part No.	Package
ATIF08PL	24SSOP
ATIF08PN	28SSOP




		Content	
Ger	neral fe	eatures	2
	Revis	ion History	3
1		onfiguration	
2	Pin D	Description	6
	2.1	ATIF08PL Pin Map (24SSOP package)	7
	2.2	ATIF08PN Pin Map (28SSOP package)	8
3	Absol	lute Maximum Rating	9
4	ESD (& Latch-up Characteristics	
	4.1	ESD Characteristics	
	4.2	Latch-up Characteristics	9
5	Electr	rical Characteristics	10
6	ATIF	08 Implementation	
	6.1	Typical current consumption	
	6.2	CS implementation	11
	6.3	LED drive implementation	
	6.4	Parallel output	
	6.5	INT (Interrupt output) Implementation	
	6.6	SCL, SDA implementation	
	6.7	CHIPID implementation	
	6.8	CTRL implementation	
7	I ² C In	nterface	
	7.1	I ² C Enable / Disable	
	7.2	Start & stop condition	
	7.3	Data validity	
	7.4	Byte format	
	7.5	Acknowledge	
	7.6	First byte	
	7.7	Transferring data	
	7.8	I ² C write and read operations in normal mode	
	7.9	I ² C timing diagram	
8	ATIF	08 control register list	
	8.1	I ² C Register Map	18
	8.2	Details	
9		mmended Circuit Diagram	
	9.1	ATIF08PL (24 SSOP)	
	9.2	ATIF08PN (28 SSOP)	
10		HANICAL DRAWING	
	10.1	Mechanical Drawing of ATIF08PL (24 SSOP)	
	10.2	Mechanical Drawing of ATIF08PN (28 SSOP)	
11		KING DESCRIPTION	
	11.1	Marking Description of ATIF08PL (24 SSOP)	
	11.2	Marking Description of ATIF08PN (28 SSOP)	
N()	TES		31

1 Pin Configuration

ATIF08PL (24-SSOP)

ATIF08PN (28-SSOP)

Pin Description

VDD, GND

Supply voltage and ground pin.

Radio frequency Noise Detection pin. Normally, R.N.D pin does not connect to anywhere. But, in radio frequency noise environment, this pin must form a pattern line on PCB.

Capacitive sensor input pins.

Internal LDO output port.

Parallel output ports of CS1~CS8 respectively / LED PWM drive output ports. The structure of these parallel output ports is open drain NMOS for active low output level operation.

SCL is I²C clock input pin and SDA is I²C data input-output pin. These ports have internal pull-up resistor. In case of not use, this pin must be not connected to any circuitry.

Touch sensing interrupt output pin. This port has internal pull-up resistor.

Chip ID selection input pin. This port has internal pull-up resistor.

Sensitivity control input pin. This port has internal pull-up resistor.

2.1 ATIF08PL Pin Map (24SSOP package)

Pin Number	Name	I/O	Description	Protection
1	CS6	Analog Input	Capacitive sensor input 6	VDD/GND
2	CS7	Analog Input	Capacitive sensor input 7	VDD/GND
3	CS8	Analog Input	Capacitive sensor input 8	VDD/GND
4	SCL	Digital Input	I ² C clock input	VDD/GND
5	SDA	Digital Input / Output	I ² C data input-output Open drain NMOS structure	VDD/GND
6	GND	Ground	Supply ground	VDD
7	R.N.D	Analog Input	Radio frequency Noise Detection pin	VDD/GND
8	D1	Digital Output	Parallel output of CS1 Open drain NMOS structure LED PWM drive output1	VDD/GND
9	D2	Digital Output	Parallel output of CS2 Open drain NMOS structure LED PWM drive output2	VDD/GND
10	D3	Digital Output	Parallel output of CS3 Open drain NMOS structure LED PWM drive output3	VDD/GND
11	D4	Digital Output	Parallel output of CS4 Open drain NMOS structure LED PWM drive output4	VDD/GND
12	D5	Digital Output	Parallel output of CS5 Open drain NMOS structure LED PWM drive output5	VDD/GND
13	D6	Digital Output	Parallel output of CS6 Open drain NMOS structure LED PWM drive output6	VDD/GND
14	D7	Digital Output	Parallel output of CS7 Open drain NMOS structure LED PWM drive output7	VDD/GND
15	D8	Digital Output	Parallel output of CS8 Open drain NMOS structure LED PWM drive output8	VDD/GND
16	LCAP	Analog Output	Internal LDO Output	VDD/GND
17	INT	Digital Output	Touch sensing interrupt output Open drain NMOS structure	VDD/GND
18	VDD	Power	Power (3.0V~5.5V)	GND
19	CS1	Analog Input	Capacitive sensor input 1	VDD/GND
20	CS2	Analog Input	Capacitive sensor input 2	VDD/GND
21	CS3	Analog Input	Capacitive sensor input 3	VDD/GND
22	CS4	Analog Input	Capacitive sensor input 4	VDD/GND
23	N.C.	-	-	-
24	CS5	Analog Input	Capacitive sensor input 5	VDD/GND

2.2 ATIF08PN Pin Map (28SSOP package)

Pin Number	Name	I/O	Description	Protection
1	CS7	Analog Input	Capacitive sensor input 7	VDD/GND
2	CS8	Analog Input	Capacitive sensor input 8	VDD/GND
3	N.C.	-	-	-
4	SCL	Digital Input	I ² C clock input	VDD/GND
5	SDA	Digital Input / Output	I ² C data input-output Open drain NMOS structure	VDD/GND
6	N.C.	-	-	-
7	GND	Ground	Supply ground	VDD
8	R.N.D	Analog Input	Radio frequency Noise Detection pin	VDD/GND
9	N.C.	-	-	-
10	D1	Digital Output	Parallel output of CS1, Open drain NMOS structure LED PWM drive output1	VDD/GND
11	D2	Digital Output	Parallel output of CS2, Open drain NMOS structure LED PWM drive output2	VDD/GND
12	D3	Digital Output	Parallel output of CS3, Open drain NMOS structure LED PWM drive output3	VDD/GND
13	D4	Digital Output	Parallel output of CS4, Open drain NMOS structure LED PWM drive output4	VDD/GND
14	D5	Digital Output	Parallel output of CS5, Open drain NMOS structure LED PWM drive output5	VDD/GND
15	D6	Digital Output	Parallel output of CS6, Open drain NMOS structure LED PWM drive output6	VDD/GND
16	D7	Digital Output	Parallel output of CS7, Open drain NMOS structure LED PWM drive output7	VDD/GND
17	D8	Digital Output	Parallel output of CS8, Open drain NMOS structure LED PWM drive output8	VDD/GND
18	LCAP	Analog Output	Internal LDO Output	VDD/GND
19	INT	Digital Output	Touch sensing interrupt output Open drain NMOS structure	VDD/GND
20	VDD	Power	Power (3.0V~5.5V)	GND
21	CS1	Analog Input	Capacitive sensor input 1	VDD/GND
22	CS2	Analog Input	Capacitive sensor input 2	VDD/GND
23	CS3	Analog Input	Capacitive sensor input 3	VDD/GND
24	CS4	Analog Input	Capacitive sensor input 4	VDD/GND
25	CHIPID	Digital Input	Chip ID selection input This port has internal pull-up resistor	VDD/GND
26	CTRL	Digital Input	Sensitivity control input This port has internal pull-up resistor	VDD/GND
27	CS5	Analog Input	Capacitive sensor input 5	VDD/GND
28	CS6	Analog Input	Capacitive sensor input 6	VDD/GND

3 Absolute Maximum Rating

Note: Unless any other command is noted, all above are operated in normal temperature.

4 ESD & Latch-up Characteristics

4.1 ESD Characteristics

Mode	Polarity	Max	Reference
		3000V	VDD
H.B.M	Pos / Neg	4000V	VSS
		8000V	P to P
		750V	VDD
M.M	Pos / Neg	625V	VSS
		525V	P to P
C.D.M	-	800V	Field Induced Charge

4.2 Latch-up Characteristics

Mode	Polarity	Max	Reference
I Test	Positive	100mA	
Trest	Negative	100mA	JESD78D : 2011
Vsupply Over Voltage	Positive	8.25V	

Electrical Characteristics

 $^{\bullet}$ V_{DD}=3.3V, Typical system frequency (Unless otherwise noted), T_A = 25 °C

Characteristics	Symbol	Test Condition	Min	Тур	Max	Units
Power supply requirement	and current o	consumption				
Operating voltage	V_{DD}		3.0		5.5	V
Current consumption	I_{DD}	V _{DD} = 3.3V, Standby state	-	0.55	-	mA
Reset and input level						
Internal reset voltage	V _{DD_RST}	T _A = 25 °C	-	2.7	-	V
Input high level	VIH	$ I_{IH} \le +5\mu A$	V _{DD} *0.6		V _{DD} +0.3	V
Input low level	VIL	$ I_{IL} \le +5\mu A$	-0.3		V _{DD} *0.3	V
Self calibration time after		Slow calibration speed	_	100	-	
system reset	T_{CAL}	Normal calibration speed	-	80	-	msec
		Fast calibration speed	-	60	-	
Internal Pull Up resister of SDA, SCL, INT	$R_{P/U}$		-	32	-	kΩ
Internal Pull Up resister of CHIPID, CTRL	$R_{P/U}$		-	2	-	ΜΩ
Touch sensing performance	,					
Minimum detective capacitance difference	ΔC_{MIN}		0.1	-	-	pF
Sense input capacitance range ¹	C_{S}		-	-	50	pF
Output impedance	7	$\Delta C > \Delta C_{MIN}$	-	12	-	0
(open drain)	Zo	$\Delta C < \Delta C_{MIN}$	-	30M	-	Ω
System performance						
Max. output current (LED drive current)	I_{OUT}	Per unit drive output port	-	-	8.0	mA
LED PWM control ²	N_{PWM}		-	16	-	step
Sensitivity control ³			-	256	-	step
Max. I ² C SCL clock speed	f_{SCL_MAX}	Maximum internal I ² C clock	-	-	1	MHz
Touch expired time	$T_{\rm EX}$	Normal calibration speed	-	30	-	sec

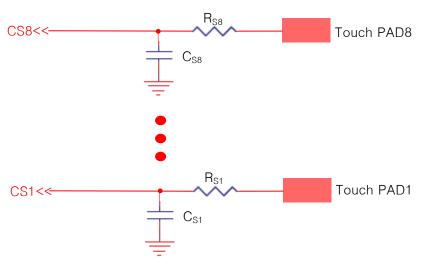
³ Refer to the chapter 8.2.8. Sensitivity register

¹ The sensitivity can be decreased with higher parallel capacitance of CS pin including parasitic capacitance made by neighbor GND or other pattern. The series resistor(under $1k\Omega$) of CS can be used in noisy condition to avoid mal-function from external surge and ESD.

Refer to the chapter 8.2.11. LED luminance control register

6 ATIF08 Implementation

6.1 Typical current consumption


ATIF08 uses internal bias circuit, so internal clock frequency and current consumption is fixed and no external bias circuit is needed. Internal clock frequency and calibration speed can be changed by I²C register setting⁴. Faster calibration speed needs more current consumption than normal or slower calibration speed. Slow calibration speed isn't recommended if it has not problem of current consumption.

Internal bias circuit can make the circuit design simple and reduce external components.

6.2 CS implementation

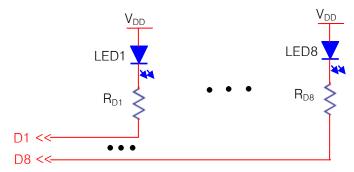
ATIF08 has 256 step selections of sensitivity and internal surge protection resister. Sensitivity of each sensing channel (CS) can be independently controlled on others. External components of CS pin such as series resistor or parallel capacitor isn't necessary. The parallel parasitic capacitance of CS pins caused by touch line, touch pad and neighbor GND or other pattern may affect sensitivity. The sensitivity will be decreased when bigger parallel parasitic capacitance of CS pin is added.

Parallel capacitor ($C_{S1\sim S8}$) of CS pin is useful in case of detail sensitivity mediation is required such as for complementation sensitivity difference between channels. Same as above parallel parasitic capacitance, sensitivity will be decreased when a big value of parallel capacitor ($C_{S1\sim S8}$) is used. Under 50pF capacitor can be used as sensitivity mediation capacitor and a few pF is usually used. The R_S , serial connection resistor of CS pins, may be used to avoid mal-function from external surge and ESD. (It might be optional.) From 200 Ω to 1k Ω is recommended for R_S . Refer to below CS pins application figure.

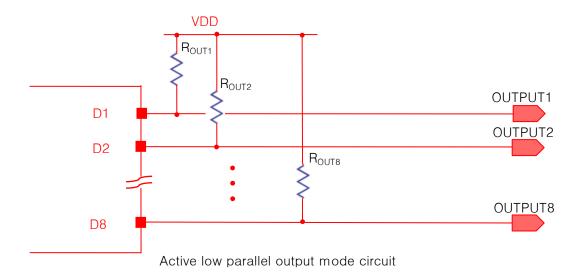
The ATIF08 has eight independent touch sensor input from CS1 to CS8. The internal touch decision process of each channel is separated from others. Therefore eight channel touch key board application can be designed by using only one ATIF08 without coupling problems.

The size and shape of PAD might have influence on the sensitivity. The sensitivity will be optimal when the size of PAD is approximately an half of the first knuckle (it's about 10 mm x 7 mm). The connection line of CS to touch PAD is recommended to be routed as short as possible to prevent from abnormal touch detect caused by connection line. The unused CS pin should not be connected with the ground. The unused CS pin(Channel) should be disable⁵ or open.

⁵ Refer to 8.2.1 Channel enable / reset register



⁴ Refer to 8.2.4. Clock control register.

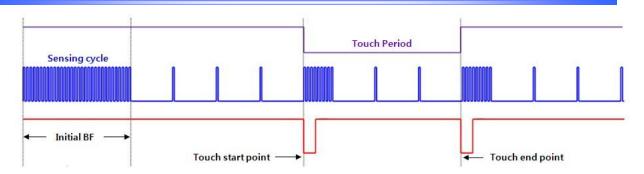

6.3 LED drive implementation

ATIF08 has a function to control the LED using D1~D8 ports. For using D1~D8 as LED driver ports, LEDs and resisters must be equipped as below figure, and write the 'port_mode' register as '1'. D1 ~ D8 ports can drive LEDs by 'PWM_ctrlx' register control. ATIF08 can drive up to 8 LED as below method. The unused Dx port should not be open. The unused Dx port should be connected with VDD or GND.

6.4 Parallel output

ATIF08 acts as active low parallel output mode. Parallel output ports (D1~D8) have an open drain NMOS structure. For this reason, the parallel output mode of ATIF08 needs R_{OUT} as below figures. The maximum output drive current is 8mA, so over a few $k\Omega$ must be used as R_{OUT} . Normally $10k\Omega$ is used as R_{OUT} . The unused Dx port should not be open. The unused Dx port should be connected with VDD or GND.

6.5 INT (Interrupt output) Implementation


An INT pin is for the touch sensing interrupt output. The interrupt pulse is generated only during short period of every each channel touch start point and touch end point. Interrupt pulse has logical low level. INT has NMOS open drain structure and internal pull-up resister of which value is $30k\Omega$ typical.

⁷ Refer to the chapter 8.2.11. LED luminance control register

 $^{^{6}\,}$ Refer to the chapter 8.2.12. Port mode control register

6.6 SCL, SDA implementation

SCL is I^2C clock input and SDA is I^2C data input-output. These ports have internal pull-up resistor. SCL has Schmitt trigger input structure to prevent clock signal from being broken. Maximum supported I^2C clock frequency is 1MHz. SDA has NMOS open drain structure and internal pull-up resister of which value is $30k\Omega$ typical. So, according to communication speed a few $k\Omega$ resister must be used as pull-up resister for proper data pulse rising time. For more details refer to 'Chapter 9. I^2C Interface'.

6.7 CHIPID implementation

CHIPID is chip address selection input. This port has internal pull-up resistor of which value is $2M\Omega$ typical. It is the first byte from the start condition. It is used to access the slave device.

ATIF08 Chip Address: 8bit

CHIPID	Address
GND	0xF8
VDD, OPEN(Pull-up resistor) ⁸	0x48

6.8 CTRL implementation

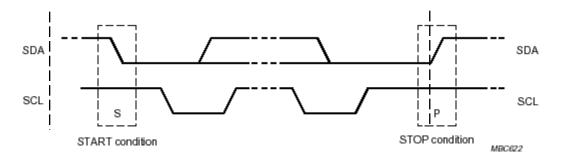
CTRL is the sensitivity control input. This port has internal pull-up resistor of which value is $2M\Omega$ typical.

ATIF08

CTRL	Sensitivity
GND	2.3%
VDD, OPEN(Pull-up resistor) ⁹	0.7%

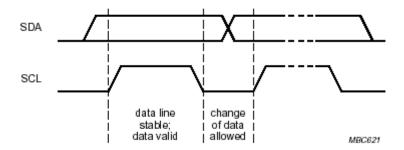
⁹ The sensitivity control input(CTRL) of ATIF08PL(24SSOP) is only open condition.

⁸ The chip address selection input(CHIPID) of ATIF08PL(24SSOP) is only open condition.


7 I²C Interface

7.1 I²C Enable / Disable

If the SDA or SCL signal goes to low, I²C control block is enabled automatically. And if the SDA and SCL signal maintain high during about 2 us, I²C control block is disabled automatically also.

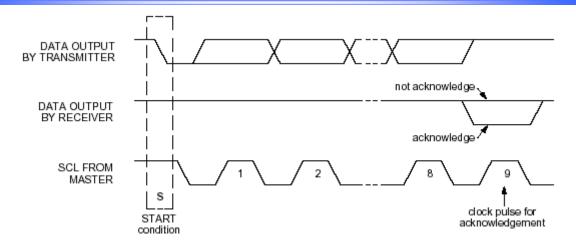

7.2 Start & stop condition

- **◀** Start Condition (S)
- **◀** Stop Condition (P)
- Repeated Start (Sr)

7.3 Data validity

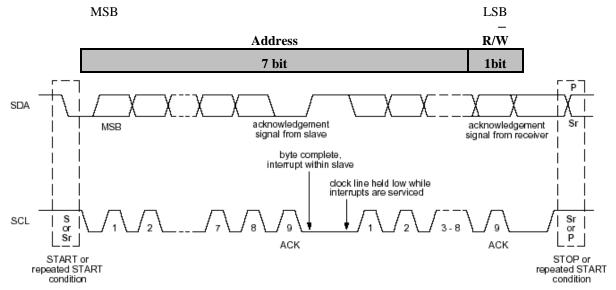
The SDA should be stable when the SCL is high and the SDA can be changed when the SCL is low.

7.4 Byte format


The byte structure is composed with 8Bit data and an acknowledge signal.

7.5 Acknowledge

It is a check bit whether the receiver gets the data from the transmitter without error or not. The receiver will write '0' when it received the data successfully and '1' if not.

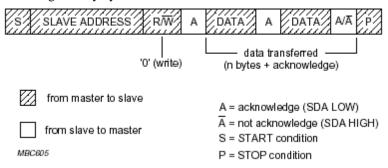

7.6 First byte

7.6.1 Slave address

It is the first byte from the start condition. It is used to access the slave device. The chip address of ATIF08 is decided to the status of CHIPID pin.

7.6.2 R/W

The direction of data is decided by the bit and it follows the address data.

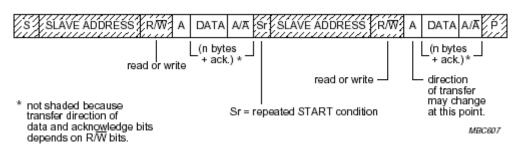


7.7 Transferring data

7.7.1 Write operation

The byte sequence is as follows:

- 1. The first byte gives the device address plus the direction bit (R/W = 0).
- 2. The second byte contains the internal address of the first register to be accessed.
- 3. The next byte is written in the internal register. Following bytes are written in successive internal registers.
- 4. The transfer lasts until stop conditions are encountered.
- 5. The ATIF08 acknowledges every byte transfer.



7.7.2 Read operation

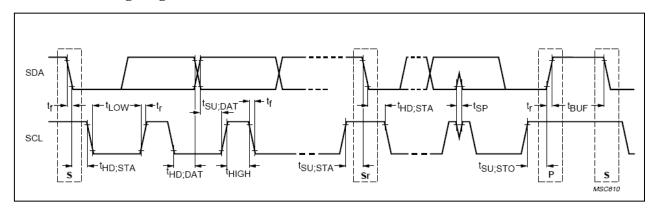
The address of the first register to read is programmed in a write operation without data, and terminated by the stop condition. Then, another start is followed by the device address and R/W= 1. All following bytes are now data to be read at successive positions starting from the initial address.

7.7.3 Read/Write Operation

I²C write and read operations in normal mode

The following figure represents the I²C normal mode write and read registers.

Write register 0x00 to 0x01 with data AA and BB


Start Device Address 0v48 ACK Register ACK Data AA ACK Data BB ACK Stop	Audi C55 VA-0		Start	Device Address 0x48	ACK	Register Address 0x00	ACK	Data AA	ACK	Data BB	ACK	Stop
---	---------------	--	-------	------------------------	-----	--------------------------	-----	---------	-----	---------	-----	------

Read register 0x00 and 0x01

Start	Device Address 0x48	ACK	Register Address 0x00	ACK	Stop		
Start	Device Address 0x49	ACK	Data Read AA	ACK	Data Read BB	ACK	Stop

From Slave to Master From Master to Slave

I²C timing diagram

DAD AMETED	CVMDOI	100kbps		4001	UNIT	
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	UNII
Hold time (repeated)START condition.	tHD;STA	4.0	-	0.6	-	us
LOW period of the SCL clock	tLOW	4.7	-	1.3	-	us
HIGH period of the SCL clock	tHIGH	4.0	-	0.6	-	us
Set-up time for a repeated START condition	tSU;STA	4.7	-	0.6	-	us
Data hold time	tHD;DAT	1.0	-	-	-	us
Data set-up time	tSU;DAT	250	-	100	-	ns
Rise time of both SDA and SCL signals	tr	-	1000	20	300	ns
Fall time of both SDA and SCL signals	tf	-	300	20	300	ns
Set-up time for STOP condition	tSU;STO	4.0	-	0.6	-	us
Bus free time between a STOP and START condition	tBUF	4.7	-	1.3	-	us
Noise margin at the LOW level for each connected device	VnL	0.1VDD	-	0.1VDD	-	V
Noise margin at the HIGH level for each connected device	VnH	0.2VDD	-	0.2VDD	-	V
Input Low level				0	V _{DD} *0.2	V
Input High level				$V_{DD}*0.8$	V_{DD}	V

8 ATIF08 control register list

- ◀ Note1: The unused bits (defined as reserved), in I2C register must be kept to the reset value or refer to the details
- ◀ Note 2 : ATIF08 has the special function registers (not be published) that are useful to improve the noise immunity from the CS, RF and so on. And these registers must be kept to the reset value except the case our company recommended. Please refer to the application note, if any noise (CS, RF and etc) problem is issued.

8.1 I²C Register Map

Name	Addr	Reset Value				Bit name of	each bytes						
Name	· (Hex)		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
ch_enable /soft rst	01H	1111 1111	ch8_en	ch7_en	ch6_en	ch5_en	ch4_en	ch3_en	ch2_en	ch1_en			
i2c_id	06H	0100 1000		L		i2c_id	wr_bit						
output	2AH	Read only	o_ch8	o_ch7	o_ch6	o_ch5	o_ch4	o_ch3	o_ch2	o_ch1			
clock_ctrl		0000 0110	init_cal_opt Reserv				clk	_sel	rb_sel				
global_ctrl1	36H	0100 1100	response_off_ctrl				response_ctr	1	bf_mode	software_rst			
state_count	37H	1111 1111	1 1 1					cal_pre_scale	er				
global_ctrl2	38H	1011 1100	imp_sel	sin_multi_mod e	1	cal_ho	ld_time	d_time Reserved clk_off					
sensitivity1	39H	0001 1100		sensitivity01									
sensitivity2	3AH	0001 1100		sensitivity02									
sensitivity3	3BH	0001 1100		sensitivity03									
sensitivity4	3CH	0001 1100				sensiti	vity04						
sensitivity5	3DH	0001 1100		sensitivity05									
sensitivity6	3EH	0001 1100		sensitivity06									
sensitivity7	3FH	0001 1100				sensiti	vity07						
sensitivity8	40H	0001 1100				sensiti	vity08						
cal_speed	41H	0110 0110	rnd_	bf_up	rnd_bf	_down	sen_t	of_up	sen_b	_down			
cal_BS_spe ed	42H	0110 0110	rnd_	bs_up	rnd_bs	_down	sen_b	os_up	sen_bs_down				
PWM_ctrl1	43H	0000 0000		pwm_	_d2			pwn	n_d1				
PWM_ctrl2	44H	0000 0000		pwm	_d4			pwn	n_d3				
PWM_ctrl3	45H	0000 0000		pwm_	_d6				n_d5				
PWM_ctrl4	46H	0000 0000		pwm_					 n_d7				
port_mode		0000 0000	pmod_d8	pmod_d7	pmod_d6	pmod_d5	pmod_d4	pmod_d3	pmod_d2	pmod_d1			
rd_ch_H1	50H					rd_cl	n_H1	<u> </u>					
rd_ch_L1	51H		-	-	-	-	-	-	rd_c	h_L1			
Percent_H	52H					touch_perc	ent[24:17]						
Percent_M	53H	Read only				touch_per	cent[16:9]						
Percent_L	54H]				touch_per	rcent[8:1]						
rd_ch_H2	56H					rd_cl	n_H2						
rd_ch_L2	57H		-	-	-	-	-	-	rd_c	h_L2			

8.2 Details

8.2.1 Channel enable / reset register

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
01h	ch_enable /soft_rst	ch8_en	ch7_en	ch6_en	ch5_en	ch4_en	ch3_en	ch2_en	ch1_en

Description

Enable, disable and reset of each channel control register.

Bit name	Reset value	Function
chx_en	1	Channel enable / disable and Channel reset (chx_en is control bit for CSx channel) 4

8.2.2 I²C address of ATIF08

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
06h	i2c_id		i2c_id						

Description

Chip address of ATIF08 control register.

Bit name	Reset value	Function
wr_bit	0	Write/Read address selection - 0 : Write address, 1 : Read address
i2c_id	0100100	Chip address of ATIF08.

8.2.3 Output data

Type: R

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2Ah	output	o_ch8	o_ch7	o_ch6	o_ch5	o_ch4	o_ch3	o_ch2	o_ch1

Description

The output data register from channel 1 to channel 8.

Bit name	Reset value	Function
o_chx	Read only	o_chx is output bit for CSx channel 0: No touch detected 1: Touch detected

8.2.4 Clock control register

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
34h	clock_ctrl		init_cal_opt			clk_sel		rb_sel	

Description

This register controls the global options of ATIF08.

The reserved bits, [Bit4] of the register address 34h, is recommended that you set to '0'.

Bit name	Reset value	Function
rb_sel	10	ATIF08 provides three internal calibration speeds with this register. 4 00, 01 : Fast 4 10 : Normal 4 11 : Slow
clk_sel	01	ATIF08 provides four internal calibration speeds with this register. 4 00: Fast 4 01: Normal 4 10: Slow 4 11: Slowest
init_cal_opt	000	To control the initial BF time. (init_cal_opt[2:0]+1) * 320 *1-Period ¹⁰ (ms)

8.2.5 Global option control register 1

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
36h	global_ctrl1	response_off_ctrl				response_ctrl	bf_mode	software _rst	

Description

This register controls the global options of ATIF08

Bit name	Reset value	Function
software_rst	0	Software reset control bit. Reset the data of all sensing channel. 4 0: No reset 4 1: Reset
bf_mode	0	Operation mode selection 4 0: Normal mode 4 1: BF mode
response_ctrl	011	Numbers of continuous touch detections for touch decision. response_ctrl[2:0] + 1 (Maximum time : 7)
response_off_ctrl	010	Numbers of continuous touch off detections for touch off decision. response_off_ ctrl[2:0] + 1 (Maximum time : 7)

 $^{^{10}}$ 1-Period means that the time from the touch sensing burst to the next sensing burst. And the number, 320 is the time control constant value.

8.2.6 State count control register

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
37h	state_count	1	1	1	cal_pre_scaler				

Description

Register to set the pre-scaler for the calibration speed.

Bit name	Reset value	Function
cal_pre_scaler	1 1111	The pre-scaler for the calibration speed. cal_pre_scaler[4:0] *1-Period (ms)

8.2.7 Global option control register 2

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
38h	global_ctrl2	imp_sel	sin_mult i_mode		cal_ho	ld_time		Reserved	clk_off

Description

This register controls the global options of ATIF08.

The reserved bits, [Bit1] of the register address 38h, is recommended that you set to '0'.

Bit name	Reset value	Function
clk_off	0	System clock off control bit. 0: Not clock off 1: Clock off
cal_hold_time	1111	Output expiration Time control. cal_hold_time[3:0] * 512 ¹¹ * 1-Period (ms) The output expiration time is infinite when the data of the "cal_hold_time" is "0000".
sin_multi_mode	0	Single/Multi output operation mode selection bit. 0: Multi output mode 1: Single output mode
imp_sel	1	Impedance of the sensing wire of all channels control bit. 0: High impedance 1: Low impedance except sensing period.

 $^{^{11}\,}$ The number, 512 is the time control constant value.

8.2.8 Sensitivity register

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
39H	sensitivity1		sensitivity01							
ЗАН	sensitivity2		sensitivity02							
3ВН	sensitivity3		sensitivity03							
3СН	sensitivity4		sensitivity04							
3DH	sensitivity5				sensiti	vity05				
3ЕН	sensitivity6		sensitivity06							
3FH	sensitivity7		sensitivity07							
40H	sensitivity8			sensitivity08						

Description

The sensitivity of channel is possible to adjust by the "sensitivity1~sensitivity8" registers. The following table show detail information of sensitivity.

The lower value of these register ATIF08 has, the higher sensitivity ATIF08 has. And if user want to set higher sensitivity over 0.7%, it is recommended to refer to the application note.

Bit name	Reset value	Function
sensitivity01 ~ sensivitiy08	0001 1100	Sensitivities of each channel. Sensitivity of CSx channel: {(sensitivity0x[7:0] x 0.025)} (%).

Calibration speed control register

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
41H	cal_speed	rnd_l	of_up	rnd_bf	_down	sen_l	of_up	sen_bf	_down

Description

Calibration speed can be controlled by this 'cal speed' register at BF mode.

Bit name	Reset value	Function						
		Sense channel down calibration speed at BF mode control bits.						
sen_bf_down	10	♣ 00 : Fastest	↓ 01 : Fast					
		♣ 10 : Normal	↓ 11 : Slow					
		Sense channel up calibration speed at BF	mode control bits.					
sen_bf_up	01		↓ 01 : Fast					
		↓10 : Normal	↓ 11 : Slow					
		RND channel down calibration speed at I	BF mode control bits.					
rnd_bf_down	10	↓ 00 : Fastest	♣ 01 : Fast					
		↓ 10 : Normal	↓ 11 : Slow					
		RND channel up calibration speed at BF	mode control bits.					
rnd_bf_up	01		↓ 01 : Fast					
	-	♣ 10 : Normal	↓ 11 : Slow					

8.2.10 Calibration speed control register at BS mode

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
42H	cal_BS_speed	rnd_l	os_up	rnd_bs	_down	sen_t	os_up	sen_bs	s_down

Description

Calibration speed can be controlled by this 'cal BS speed' register at BS mode.

Bit name	Reset value	Fu	Function						
sen_bs_down	10	Sense channel down calibration speed at 4 00 : Fastest 4 10 : Normal	BS mode control bits. 4 01 : Fast 4 11 : Slow						
sen_bs_up	01	Sense channel up calibration speed at BS 4 00 : Fastest 4 10 : Normal	S mode control bits. 4 01 : Fast 4 11 : Slow						
rnd_bs_down	10	RND channel down calibration speed at 4 00 : Fastest 4 10 : Normal	BS mode control bits. 4 01 : Fast 4 11 : Slow						
rnd_bs_up	01	RND channel up calibration speed at BS 4 00 : Fastest 4 10 : Normal	mode control bits. 4 01 : Fast 4 11 : Slow						

8.2.11 LED luminance control register

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
43h	PWM_ctrl1		pwn	n_d2		pwm_d1				
44h	PWM_ctrl2		pwn	n_d4		pwm_d3				
45h	PWM_ctrl3		pwn	n_d6		pwm_d5				
46h	PWM_ctrl4		pwn	n_d8			pwn	n_d7		

Description

LED luminance can be controlled by "PWM_ctrlx" register.

Bit name	Reset value	Function
pwm_dx	0000	The LED PWM control bits of Dx port. ↓ 0000 : The minimum low duty ↓ 1111 : The maximum low duty

8.2.12 Port mode control register

Type: R/W

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
4Fh	port_mode	pmod_d8	pmod_d7	pmod_d6	pmod_d5	pmod_d4	pmod_d3	pmod_d2	pmod_d1

Description

This register controls the mode of output port.

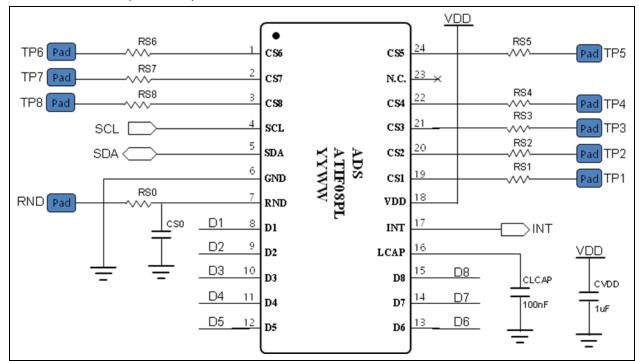
Bit name	Reset value	Function			
pmod_dx	0	Select the output port operation mode of each channel. • 0: Parallel output mode • 1: LED drive mode			

8.2.13 Sense, reference count read register

Type: R

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
50h	rd_ch_H1	rd_ch_H1							
51h	rd_ch_L1	-	-	-	-	-	-	rd_c	h_L1
52h	Percent_H	touch_percent[25:18]							
53h	Percent_M	touch_percent[17:10]							
54h	Percent_L	touch_percent[9:2]							
56h	rd_ch_H2	rd_ch_H2							
57h	rd_ch_L2	-	-	-	-	-	-	rd_c	h_L2

Description


ATIF08 provides the special function to read sense count of each channels or reference count.

Bit name	Reset value	Function		
rd_ch_H1	Read only	Read channel indication register. 00000001 : - 00000010 : R.N.D channel 00000100 : CS1 channel 00001000 : CS2 channel 00010000 : CS3 channel 00100000 : CS4 channel 01000000 : CS5 channel 10000000 : CS6 channel		
rd_ch_L1	Read only	Read channel indication register. 4 01 : CS7 channel 4 10 : CS8 channel		
touch_percent[24:17]	Read only	The percent data of RND channel and sense channels. [25:18] bits of the touch percent data.		
touch_percent[16:9]	Read only	The percent data of RND channel and sense channels. [17:10] bits of the touch percent data.		
touch_percent[8:1]	Read only	The percent data of RND channel and sense channels. 4 [9:2] bits of the touch percent data.		
rd_ch_H2	Read only	Read channel indication register. 00000001 : - 00000010 : R.N.D channel 00000100 : CS1 channel 00001000 : CS2 channel 00010000 : CS3 channel 00100000 : CS4 channel 01000000 : CS5 channel 10000000 : CS6 channel		
rd_ch_L2	Read only	Read channel indication register. 4 01 : CS7 channel 4 10 : CS8 channel		

9 Recommended Circuit Diagram

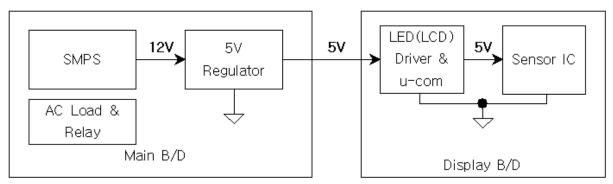
9.1 ATIF08PL (24 SSOP)

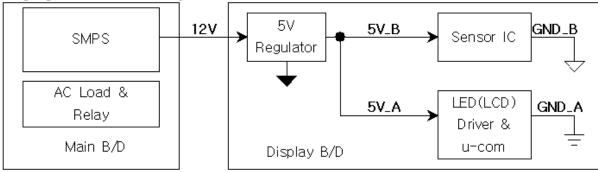
ATIF08PL (24 SSOP) Application Example Circuit

- ✓ ATIF08PL is reset by internal reset circuit. VDD voltage rising time should be shorter than 100msec for proper operation.
- ✓ LCAP voltage should be bigger than 'minimum digital operating voltage' for normal reset operation when VDD voltage arrived at reset voltage. (# Minimum digital operating voltage : 0.9~1.4V)
- ✓ Normally, RND's capacitance have to be similar to capacitance of other channels(CS1~CS8). Therefore, RND pin have to connect with a proper capacitor(CS0). Additionally, in radio frequency noise environment, RND pin must form a pattern line on PCB.
- ✓ The VDD periodic voltage ripple over 50mV and the ripple frequency is lower than 10 kHz can cause wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be separated from other circuit. Especially LED driver power line or digital switching circuit power line certainly should be treated to be separated from touch circuit.
- ✓ The CS patterns also should be routed as short as possible and the width of line might be about 0.25mm.
- ✓ Parallel capacitor of CS pin could be useful in case detail sensitivity mediation is required such as for complementation sensitivity difference between channels.
- ✓ Serial connection resistor of CS pins may be used to avoid mal-function from external surge and ESD and the closer to IC(ATIF08PL), the stronger immunity against mal-function and ESD is.
- ✓ The CVDD capacitor that is between VDD and GND is an obligation.
- ✓ CVDD and CLCAP capacitors should be located as close as possible from ATIF08PL.
- ✓ The CS pattern routing should be formed by bottom metal (opposite metal of touch PAD).
- ✓ The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent external noise from interfere with sensing frequency.

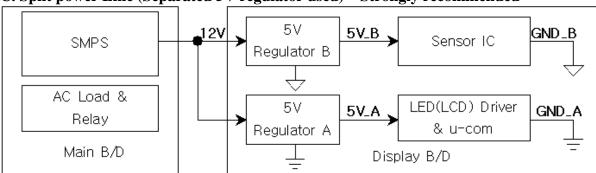
9.2 ATIF08PN (28 SSOP)

ATIF08PN (28 SSOP) Application Example Circuit


- ATIF08PN is reset by internal reset circuit. VDD voltage rising time should be shorter than 100msec for proper operation.
- LCAP voltage should be bigger than 'minimum digital operating voltage' for normal reset operation when VDD voltage arrived at reset voltage. (# Minimum digital operating voltage: 0.9~1.4V)
- Normally, RND's capacitance have to be similar to capacitance of other channels(CS1~CS8). Therefore, RND pin have to connect with a proper capacitor(CS0). Additionally, in radio frequency noise environment, RND pin must form a pattern line on PCB.
- The VDD periodic voltage ripple over 50mV and the ripple frequency is lower than 10 kHz can cause wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be separated from other circuit. Especially LED driver power line or digital switching circuit power line certainly should be treated to be separated from touch circuit.
- The CS patterns also should be routed as short as possible and the width of line might be about 0.25mm.
- Parallel capacitor of CS pin could be useful in case detail sensitivity mediation is required such as for complementation sensitivity difference between channels.
- Serial connection resistor of CS pins may be used to avoid mal-function from external surge and ESD and the closer to IC(ATIF08PN), the stronger immunity against mal-function and ESD is.
- The CVDD capacitor that is between VDD and GND is an obligation.
- CVDD and CLCAP capacitors should be located as close as possible from ATIF08PN.
- The CS pattern routing should be formed by bottom metal (opposite metal of touch PAD).
- The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent external noise from interfere with sensing frequency.

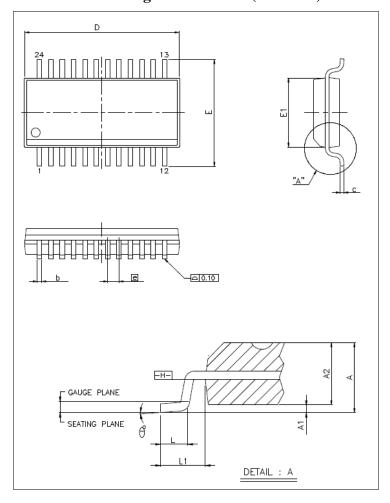

9.3 Example – Power Line Split Strategy PCB Layout

A. Not split power Line (Bad power line design)



- The noise that is generated by AC load or relay can be loaded at 5V power line.
- A big inductance might be appeared in case of the connection line between main board and display board is too long, moreover the voltage ripple could be generated by LED (LCD) display driver at VDD (5V).

B. Split power Line (One 5V regulator used) – Recommended

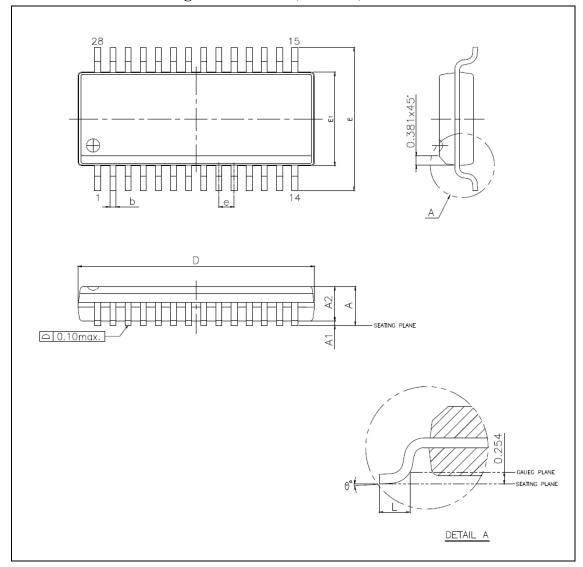

C. Split power Line (Separated 5V regulator used) – Strongly recommended

10 MECHANICAL DRAWING

10.1 Mechanical Drawing of ATIF08PL (24 SSOP)

SYMBOLS	MIN.	NOM.	MAX.		
Α	1.35	1.63	1.75		
A1	0.10	0.15	0.25		
A2	ı	_	1.50		
D	8.56	8.66	8.74		
E	5.79	5.99	6.20		
E1	3.81	3.91	3.99		
b	0.20	_	0.30		
С	0.18	_	0.25		
е	0.64 BASIC				
L	0.41	0.64	1.27		
L1	1.04 BASIC				
θ°	0.	_	8°		

UNIT: MM


NOTES:

1.JEDEC OUTLINE : MO-137 AE

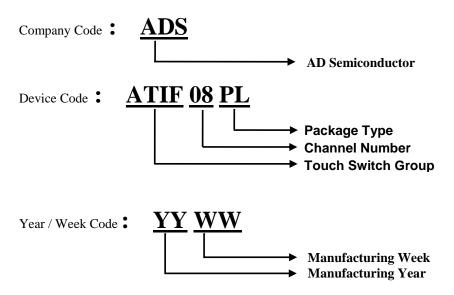
2.DIMENSION D DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS. MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. DIMENSION E1 DOES NOT INCLUDE INTERLEAD MOLD PROTRUSIONS. INTERLEAD MOLD PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. 3,DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION/INTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 MM TOTAL IN EXCESS OF 6 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR INTRUSION SHALL NOT REDUCE DIMENSION & BY MORE THAN 0.05 MM AT LEAST.

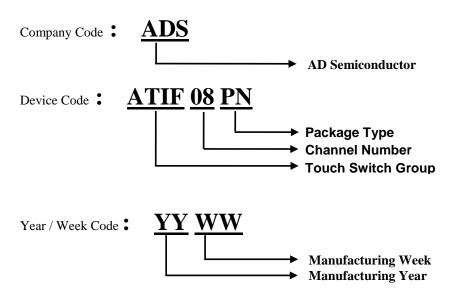
10.2 Mechanical Drawing of ATIF08PN (28 SSOP)

SYMBOLS	MIN.	MAX.
Α	1.35	1.75
A1	0.10	0.25
A2	-	1.50
b	0.20	0.30
D	9.80	10.01
E1	3.81	3.99
е	0.635	BASIC
E	5.79	6.20
Ĺ	0.41	1.27
θ°	0	8

UNIT: MM

NOTES:


- 1.JEDEC OUTLINE : MO-137 AF
- 2.DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15mm (0.006in)
- 3.DIMENSIONS "E1" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25mm (0.010in) PER SIDE.



11 MARKING DESCRIPTION

11.1 Marking Description of ATIF08PL (24 SSOP)

11.2 Marking Description of ATIF08PN (28 SSOP)

NOTES:

LIFE SUPPORT POLICY

AD SEMICONDUCTOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF AD SEMICONDUCTOR CORPORATION

The ADS logo is a registered trademark of ADSemiconductor

© 2006 ADSemiconductor – All Rights Reserved

www.adsemicon.com www.adsemicon.co.kr

